File size: 5,450 Bytes
f2fc1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Psoriatic_Arthritis"
cohort = "GSE142049"

# Input paths
in_trait_dir = "../DATA/GEO/Psoriatic_Arthritis"
in_cohort_dir = "../DATA/GEO/Psoriatic_Arthritis/GSE142049"

# Output paths
out_data_file = "./output/preprocess/3/Psoriatic_Arthritis/GSE142049.csv"
out_gene_data_file = "./output/preprocess/3/Psoriatic_Arthritis/gene_data/GSE142049.csv"
out_clinical_data_file = "./output/preprocess/3/Psoriatic_Arthritis/clinical_data/GSE142049.csv"
json_path = "./output/preprocess/3/Psoriatic_Arthritis/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# This dataset has transcriptional data from B cells, which indicates gene expression data
is_gene_available = True 

# 2. Data Type Conversion Functions
def convert_trait(x):
    if x is None or ':' not in x:
        return None
    # Extract diagnosis after colon
    diagnosis = x.split(': ')[1].strip()
    # Binary classification: Psoriatic Arthritis vs others
    return 1 if diagnosis == 'Psoriatic Arthritis' else 0

def convert_age(x):
    if x is None or ':' not in x:
        return None
    try:
        # Extract age value after colon and convert to float
        return float(x.split(': ')[1])
    except:
        return None

def convert_gender(x):
    if x is None or ':' not in x:
        return None
    gender = x.split(': ')[1].strip()
    # Convert to binary: Female=0, Male=1
    if gender == 'F':
        return 0
    elif gender == 'M':
        return 1
    return None

# Identify row indices for variables
trait_row = 6  # working_diagnosis contains trait info
age_row = 2    # age is available
gender_row = 1 # gender is available

# 3. Save initial metadata
is_trait_available = trait_row is not None
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Extract clinical features if trait data is available
if trait_row is not None:
    clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the processed clinical data
    preview = preview_df(clinical_df)
    print("Preview of processed clinical data:")
    print(preview)
    
    # Save clinical data
    clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Observe identifiers start with "ILMN_" - these are Illumina probe IDs that need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)

print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Extract mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')

# Convert probe data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Look at the first few rows of mapped gene data
print("Gene expression data after mapping:")
print(gene_data.head())
print("\nShape:", gene_data.shape)
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)

# 3. Handle missing values systematically  
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and information saving
note = "Dataset contains gene expression data from CD14+ cells of Psoriatic Arthritis patients and healthy controls."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data only if usable 
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)