File size: 5,528 Bytes
f2fc1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Psoriatic_Arthritis"
cohort = "GSE61281"

# Input paths
in_trait_dir = "../DATA/GEO/Psoriatic_Arthritis"
in_cohort_dir = "../DATA/GEO/Psoriatic_Arthritis/GSE61281"

# Output paths
out_data_file = "./output/preprocess/3/Psoriatic_Arthritis/GSE61281.csv"
out_gene_data_file = "./output/preprocess/3/Psoriatic_Arthritis/gene_data/GSE61281.csv"
out_clinical_data_file = "./output/preprocess/3/Psoriatic_Arthritis/clinical_data/GSE61281.csv"
json_path = "./output/preprocess/3/Psoriatic_Arthritis/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data
is_gene_available = True  # Study title indicates whole blood transcriptional profiling

# 2.1 Data Availability
trait_row = 1  # 'condition' field contains case/control status
gender_row = 2  # 'gender' field available
age_row = None  # Age data not directly available

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert trait value to binary: 1 for PsA cases, 0 for controls and PsC"""
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip().lower()
    if 'psoriatic arthritis' in value:
        return 1
    elif 'unaffected control' in value or 'cutaneous psoriasis without arthritis' in value:
        return 0
    return None

def convert_gender(value: str) -> int:
    """Convert gender to binary: 0 for female, 1 for male"""
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip().lower()
    if 'female' in value:
        return 0
    elif 'male' in value:
        return 1
    return None

# 3. Save Initial Metadata
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
                             is_gene_available=is_gene_available,
                             is_trait_available=trait_row is not None)

# 4. Extract Clinical Features
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the selected features
    print("Preview of selected clinical features:")
    print(preview_df(selected_clinical_df))
    
    # Save clinical data
    selected_clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Looking at the gene identifiers like 'A_23_P100001', these are Agilent array probe IDs
# They need to be mapped to standard human gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)

print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Create mapping dataframe using ID and GENE_SYMBOL columns
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'GENE_SYMBOL')

# Apply gene mapping to get gene expression data 
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview the mapped gene expression data
print("Gene expression data after mapping:")
print(gene_data.head())
print("\nShape:", gene_data.shape)
print("\nFirst 20 gene symbols:")
print(list(gene_data.index)[:20])

# Save the gene expression data
gene_data.to_csv(out_gene_data_file)
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)

# 3. Handle missing values systematically  
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and information saving
note = "Dataset contains subcutaneous adipose tissue gene expression data from PCOS patients and controls. The gender feature is biased (all female) and was removed."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data only if usable 
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)