File size: 6,100 Bytes
f2fc1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Rectal_Cancer"
cohort = "GSE133057"

# Input paths
in_trait_dir = "../DATA/GEO/Rectal_Cancer"
in_cohort_dir = "../DATA/GEO/Rectal_Cancer/GSE133057"

# Output paths
out_data_file = "./output/preprocess/3/Rectal_Cancer/GSE133057.csv"
out_gene_data_file = "./output/preprocess/3/Rectal_Cancer/gene_data/GSE133057.csv"
out_clinical_data_file = "./output/preprocess/3/Rectal_Cancer/clinical_data/GSE133057.csv"
json_path = "./output/preprocess/3/Rectal_Cancer/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# Yes, from background info this is transcriptomic analysis of rectal cancer biopsies
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# AJCC score is a measure of tumor regression (phenotypic trait)
trait_row = 1  
gender_row = 2
age_row = 5

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert AJCC score to binary where 0,1 are good response (0) and 2,3 are poor response (1)"""
    if not value or ':' not in value:
        return None
    score = int(value.split(': ')[1])
    if score in [0, 1]:
        return 0  # good response
    elif score in [2, 3]:
        return 1  # poor response
    return None

def convert_age(value: str) -> float:
    """Convert age string to float"""
    if not value or ':' not in value:
        return None
    try:
        return float(value.split(': ')[1])
    except:
        return None

def convert_gender(value: str) -> int:
    """Convert gender to binary (0=female, 1=male)"""
    if not value or ':' not in value:
        return None
    gender = value.split(': ')[1].lower()
    if gender == 'female':
        return 0
    elif gender == 'male':
        return 1
    return None

# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_features = geo_select_clinical_features(clinical_df=clinical_data,
                                                   trait=trait,
                                                   trait_row=trait_row,
                                                   convert_trait=convert_trait,
                                                   age_row=age_row,
                                                   convert_age=convert_age,
                                                   gender_row=gender_row,
                                                   convert_gender=convert_gender)
    
    print("Preview of extracted clinical features:")
    print(preview_df(clinical_features))
    
    clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Based on "ILMN_" prefix in gene identifiers, these appear to be Illumina probe IDs, not gene symbols
# They will need to be mapped to standard gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)

print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# 1. From observation:
# - Gene expression data uses 'ILMN_' prefixed IDs
# - In gene annotation, 'ID' column stores these identifiers, and 'Symbol' column stores gene symbols

# 2. Get gene mapping dataframe
mapping_df = get_gene_mapping(gene_annotation, 'ID', 'Symbol')

# 3. Apply mapping to convert probe level data to gene level data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Preview and save the gene expression data
print("\nGene expression data shape:", gene_data.shape)
print("\nPreview of gene expression data:")
print(preview_df(gene_data))

gene_data.to_csv(out_gene_data_file)
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# 1. Normalize gene symbols 
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# 3. Handle missing values systematically  
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and information saving
note = "Dataset contains gene expression data from rectal cancer patients examining chemoradiotherapy response."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data only if usable 
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)