File size: 4,681 Bytes
f2fc1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Rectal_Cancer"
cohort = "GSE145037"

# Input paths
in_trait_dir = "../DATA/GEO/Rectal_Cancer"
in_cohort_dir = "../DATA/GEO/Rectal_Cancer/GSE145037"

# Output paths
out_data_file = "./output/preprocess/3/Rectal_Cancer/GSE145037.csv"
out_gene_data_file = "./output/preprocess/3/Rectal_Cancer/gene_data/GSE145037.csv"
out_clinical_data_file = "./output/preprocess/3/Rectal_Cancer/clinical_data/GSE145037.csv"
json_path = "./output/preprocess/3/Rectal_Cancer/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# From background info, this dataset contains gene expression data from rectal cancer patients
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Row identifiers
trait_row = 3  # response to CRT in row 3
age_row = 2    # age in row 2  
gender_row = 1 # gender in row 1

# 2.2 Conversion functions
def convert_trait(x):
    if not x:
        return None
    value = x.split(': ')[1].lower()
    return 0 if 'non-response' in value else 1

def convert_age(x):
    if not x:
        return None
    try:
        return int(x.split(': ')[1])
    except:
        return None

def convert_gender(x):
    if not x:
        return None
    value = x.split(': ')[1].lower()
    return 1 if 'male' in value else 0

# 3. Save metadata for initial filtering
is_trait_avail = trait_row is not None
validate_and_save_cohort_info(is_final=False,
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_avail)

# 4. Extract clinical features
selected_clinical = geo_select_clinical_features(clinical_data,
                                               trait="Response",
                                               trait_row=trait_row,
                                               convert_trait=convert_trait,
                                               age_row=age_row,
                                               convert_age=convert_age, 
                                               gender_row=gender_row,
                                               convert_gender=convert_gender)

# Preview the extracted data
preview_dict = preview_df(selected_clinical)
print("Preview of extracted clinical data:")
print(preview_dict)

# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The IDs are human gene symbols (e.g. A1BG, A1CF, A2M) and do not need mapping
requires_gene_mapping = False
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(genetic_data)
genetic_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)

# 3. Handle missing values systematically  
linked_data = handle_missing_values(linked_data, "Response")

# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, "Response")

# 5. Final validation and information saving
note = "Dataset contains gene expression data from rectal cancer patients examining chemoradiotherapy response."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data only if usable 
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)