File size: 5,291 Bytes
f2fc1fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Rectal_Cancer"
cohort = "GSE150082"
# Input paths
in_trait_dir = "../DATA/GEO/Rectal_Cancer"
in_cohort_dir = "../DATA/GEO/Rectal_Cancer/GSE150082"
# Output paths
out_data_file = "./output/preprocess/3/Rectal_Cancer/GSE150082.csv"
out_gene_data_file = "./output/preprocess/3/Rectal_Cancer/gene_data/GSE150082.csv"
out_clinical_data_file = "./output/preprocess/3/Rectal_Cancer/clinical_data/GSE150082.csv"
json_path = "./output/preprocess/3/Rectal_Cancer/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# From Series_title and Series_summary, we can see this is a microarray gene expression dataset
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# Trait (Response to treatment)
trait_row = 4 # 'response' field has Good/Poor values
def convert_trait(x):
if pd.isna(x): return None
val = x.split(': ')[1]
if val == 'Poor': return 0
if val == 'Good': return 1
return None
# Age
age_row = 2
def convert_age(x):
if pd.isna(x): return None
try:
return int(x.split(': ')[1])
except:
return None
# Gender/Sex
gender_row = 0
def convert_gender(x):
if pd.isna(x): return None
val = x.split(': ')[1]
if val == 'F': return 0
if val == 'M': return 1
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
clinical_features = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait,
age_row, convert_age,
gender_row, convert_gender)
# Preview the extracted features
preview_dict = preview_df(clinical_features)
print("Preview of clinical features:")
print(preview_dict)
# Save clinical data
clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Based on inspecting the gene identifiers (e.g. 'A_23_P100001'), these appear to be probe IDs
# from an Agilent microarray platform, not standard human gene symbols.
# They will need to be mapped to proper gene symbols.
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# 1. Determine mapping columns:
# 'ID' column in annotation contains same identifiers as gene expression data
# 'GENE_SYMBOL' contains the gene symbols we want to map to
# 2. Get mapping dataframe with ID and gene symbol columns
gene_mapping = get_gene_mapping(gene_annotation, 'ID', 'GENE_SYMBOL')
# 3. Apply gene mapping to convert probe-level data to gene-level expression
gene_data = apply_gene_mapping(genetic_data, gene_mapping)
# Preview transformed data
print("Gene expression data shape after mapping:", gene_data.shape)
print("\nPreview of first few rows:")
print(gene_data.head())
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Dataset contains gene expression data from rectal cancer patients with focus on KRAS mutation status."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |