File size: 5,180 Bytes
f2fc1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Rectal_Cancer"
cohort = "GSE170999"

# Input paths
in_trait_dir = "../DATA/GEO/Rectal_Cancer"
in_cohort_dir = "../DATA/GEO/Rectal_Cancer/GSE170999"

# Output paths
out_data_file = "./output/preprocess/3/Rectal_Cancer/GSE170999.csv"
out_gene_data_file = "./output/preprocess/3/Rectal_Cancer/gene_data/GSE170999.csv"
out_clinical_data_file = "./output/preprocess/3/Rectal_Cancer/clinical_data/GSE170999.csv"
json_path = "./output/preprocess/3/Rectal_Cancer/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# Yes, this dataset contains gene expression data (Affymetrix U133 platform mentioned)
is_gene_available = True

# 2. Variable Availability and Data Type Conversion

# 2.1 Find row indices for clinical variables
trait_row = 0  # KRAS mutation status is at row 0
age_row = None  # Age data not available 
gender_row = None  # Gender data not available

# 2.2 Data type conversion functions
def convert_trait(val):
    if not isinstance(val, str):
        return None
    val = val.lower().split(': ')[-1]
    if 'mutant' in val:
        return 1
    elif 'wild-type' in val:
        return 0
    return None
    
def convert_age(val):
    return None  # Not used since age data not available

def convert_gender(val):
    return None  # Not used since gender data not available

# 3. Save metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Extract clinical features
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    print("Preview of clinical features:")
    print(preview_df(clinical_features))
    
    # Save clinical data
    clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# These appear to be probe IDs from Affymetrix U133 Plus 2.0 microarray
# Not gene symbols - need to map to HGNC gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)

print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# 1. The 'ID' column in gene annotation matches probe IDs in gene expression data
# and 'Gene Symbol' contains the corresponding gene symbols

# 2. Extract mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, "ID", "Gene Symbol")

# 3. Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview gene data
print("Preview of gene expression data after mapping:")
print(gene_data.head())
print("\nShape:", gene_data.shape)
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)

# 3. Handle missing values systematically  
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and information saving
note = "Dataset contains gene expression data from rectal cancer patients with focus on KRAS mutation status."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data only if usable 
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)