File size: 5,938 Bytes
f2fc1fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Rectal_Cancer"
# Input paths
tcga_root_dir = "../DATA/TCGA"
# Output paths
out_data_file = "./output/preprocess/3/Rectal_Cancer/TCGA.csv"
out_gene_data_file = "./output/preprocess/3/Rectal_Cancer/gene_data/TCGA.csv"
out_clinical_data_file = "./output/preprocess/3/Rectal_Cancer/clinical_data/TCGA.csv"
json_path = "./output/preprocess/3/Rectal_Cancer/cohort_info.json"
# 1. Find directory for rectal cancer data
selected_dir = 'TCGA_Rectal_Cancer_(READ)'
cohort_dir = os.path.join(tcga_root_dir, selected_dir)
# 2. Get file paths for clinical and genetic data
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
# 3. Load the data files
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
# 4. Print clinical data columns
print("Clinical data columns:")
print(clinical_df.columns.tolist())
# Record data availability
is_gene_available = len(genetic_df.columns) > 0
is_trait_available = len(clinical_df.columns) > 0
validate_and_save_cohort_info(
is_final=False,
cohort="TCGA",
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# Define candidate columns for age and gender
candidate_age_cols = ["age_at_initial_pathologic_diagnosis", "days_to_birth"]
candidate_gender_cols = ["gender"]
# Load clinical data directly from the root directory
clinical_file_path = os.path.join(tcga_root_dir, "READ.clinical.txt")
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep="\t")
# Extract and preview age columns
age_preview = {}
for col in candidate_age_cols:
if col in clinical_df.columns:
age_preview[col] = clinical_df[col].head(5).tolist()
print("Age columns preview:", preview_df(clinical_df[candidate_age_cols], n=5))
# Extract and preview gender columns
gender_preview = {}
for col in candidate_gender_cols:
if col in clinical_df.columns:
gender_preview[col] = clinical_df[col].head(5).tolist()
print("\nGender columns preview:", preview_df(clinical_df[candidate_gender_cols], n=5))
# For Rectal Cancer cohort from TCGA dataset
candidate_age_cols = ["age_at_diagnosis", "age_at_index", "age_began_smoking", "age_at_initial_pathologic_diagnosis"]
candidate_gender_cols = ["gender", "sex"]
# Get clinical file path
clinical_file_path, _ = tcga_get_relevant_filepaths(os.path.join(tcga_root_dir, trait))
# Load clinical data
clinical_df = pd.read_csv(clinical_file_path, sep='\t', index_col=0)
# Create preview dictionaries
age_preview = {}
for col in candidate_age_cols:
if col in clinical_df.columns:
age_preview[col] = clinical_df[col].head().to_list()
gender_preview = {}
for col in candidate_gender_cols:
if col in clinical_df.columns:
gender_preview[col] = clinical_df[col].head().to_list()
print("Age columns preview:", age_preview)
print("Gender columns preview:", gender_preview)
# 1. Find directory for rectal cancer data
selected_dir = 'TCGA_Rectal_Cancer_(READ)'
cohort_dir = os.path.join(tcga_root_dir, selected_dir)
# 2. Get file paths for clinical and genetic data
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
# 3. Load the data files
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
# 4. Print clinical data columns
print("Clinical data columns:")
print(clinical_df.columns.tolist())
# Record data availability
is_gene_available = len(genetic_df.columns) > 0
is_trait_available = len(clinical_df.columns) > 0
validate_and_save_cohort_info(
is_final=False,
cohort="TCGA",
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# Get age column name
age_candidates = {
'age_at_initial_pathologic_diagnosis': ['56', '45', '72', '71', '65'],
'days_to_birth': ['-20454', '-27549', '-28914', '-24705', '-19724']
}
# 'age_at_initial_pathologic_diagnosis' is more direct and interpretable than 'days_to_birth'
age_col = 'age_at_initial_pathologic_diagnosis'
# Get gender column name
gender_candidates = {
'gender': ['MALE', 'FEMALE', 'MALE', 'MALE', 'MALE']
}
# 'gender' is the only and valid column for gender information
gender_col = 'gender'
# Print chosen columns
print(f"Selected age column: {age_col}")
print(f"Selected gender column: {gender_col}")
# 1. Extract and standardize clinical features
selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col, gender_col)
# 2. Normalize gene symbols in genetic data
normalized_genetic_df = normalize_gene_symbols_in_index(genetic_df)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_genetic_df.to_csv(out_gene_data_file)
# 3. Link clinical and genetic data
linked_data = pd.merge(selected_clinical_df, normalized_genetic_df.T, left_index=True, right_index=True)
# 4. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 5. Check for bias in trait and demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 6. Validate and save cohort info
note = f"Sample size after preprocessing: {len(linked_data)}. Number of genes: {len(linked_data.columns) - 3}"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort="TCGA",
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 7. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
print(f"Linked data saved to {out_data_file}")
print("Shape of final linked data:", linked_data.shape)
else:
print("Dataset was found to be unusable and was not saved") |