File size: 5,536 Bytes
f2fc1fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Red_Hair"
cohort = "GSE207744"
# Input paths
in_trait_dir = "../DATA/GEO/Red_Hair"
in_cohort_dir = "../DATA/GEO/Red_Hair/GSE207744"
# Output paths
out_data_file = "./output/preprocess/3/Red_Hair/GSE207744.csv"
out_gene_data_file = "./output/preprocess/3/Red_Hair/gene_data/GSE207744.csv"
out_clinical_data_file = "./output/preprocess/3/Red_Hair/clinical_data/GSE207744.csv"
json_path = "./output/preprocess/3/Red_Hair/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Based on background info mentioning "transcriptomic study" and "gene expression profile analysis"
is_gene_available = True
# 2.1 Data Availability
# For trait - using lesion type (row 2)
# For age - not available in data
# For gender - not available in data
trait_row = 2
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(x):
"""Convert lesion type to binary - Non Lesion (0) vs other lesion types (1)"""
if pd.isna(x):
return None
value = x.split(": ")[1] if ": " in x else x
if value == "Non Lesion":
return 0
elif value in ["Actinic Keratosis", "Lesion", "Peri Lesion"]:
return 1
return None
# Age and gender conversion functions not needed since data unavailable
convert_age = None
convert_gender = None
# 3. Save initial metadata
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None))
# 4. Extract clinical features since trait_row is not None
clinical_selected = geo_select_clinical_features(clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait)
# Preview the selected clinical data
print("Preview of selected clinical features:")
print(preview_df(clinical_selected))
# Save clinical data
clinical_selected.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Based on the identifiers observed (e.g. "(+)E1A_r60_1", "A_19_P00315452"),
# these are probe IDs rather than standard human gene symbols
# The identifiers appear to be Agilent microarray probe IDs that need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# 1. Based on the gene identifiers and gene annotation data:
# - Gene expression data uses identifiers like "A_19_P00315452"
# - Gene annotation data has matching IDs in the "ID" column
# - Gene symbols are stored in "GENE_SYMBOL" column
# 2. Extract mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
# 3. Apply gene mapping to convert probe measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview the results
print("Preview of mapped gene expression data:")
print(gene_data.head())
print("\nShape after mapping:", gene_data.shape)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Dataset contains gene expression data from rectal cancer patients examining chemoradiotherapy response."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |