File size: 5,109 Bytes
f2fc1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Red_Hair"

# Input paths
tcga_root_dir = "../DATA/TCGA"

# Output paths
out_data_file = "./output/preprocess/3/Red_Hair/TCGA.csv"
out_gene_data_file = "./output/preprocess/3/Red_Hair/gene_data/TCGA.csv"
out_clinical_data_file = "./output/preprocess/3/Red_Hair/clinical_data/TCGA.csv"
json_path = "./output/preprocess/3/Red_Hair/cohort_info.json"

# 1. Find directory for melanoma data - most relevant to red hair as both involve melanin pathways
selected_dir = 'TCGA_Melanoma_(SKCM)'
cohort_dir = os.path.join(tcga_root_dir, selected_dir)

# 2. Get file paths for clinical and genetic data 
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)

# 3. Load the data files
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')

# 4. Print clinical data columns
print("Clinical data columns:")
print(clinical_df.columns.tolist())

# Record data availability
is_gene_available = len(genetic_df.columns) > 0 
is_trait_available = len(clinical_df.columns) > 0

validate_and_save_cohort_info(
    is_final=False,
    cohort="TCGA",
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)
# Identify candidate columns
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth']
candidate_gender_cols = ['gender']

# Load clinical data
clinical_file_path, _ = tcga_get_relevant_filepaths(tcga_root_dir)
clinical_df = pd.read_csv(clinical_file_path, index_col=0)

# Extract and preview age columns
age_preview = clinical_df[candidate_age_cols].head()
print("Age columns preview:", preview_df(age_preview))

# Extract and preview gender columns 
gender_preview = clinical_df[candidate_gender_cols].head()
print("Gender columns preview:", preview_df(gender_preview))
# 1. Find directory for melanoma data - most relevant to red hair as both involve melanin pathways
selected_dir = 'TCGA_Melanoma_(SKCM)'
cohort_dir = os.path.join(tcga_root_dir, selected_dir)

# 2. Get file paths for clinical and genetic data 
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)

# 3. Load the data files
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')

# 4. Print clinical data columns
print("Clinical data columns:")
print(clinical_df.columns.tolist())

# Record data availability
is_gene_available = len(genetic_df.columns) > 0 
is_trait_available = len(clinical_df.columns) > 0

validate_and_save_cohort_info(
    is_final=False,
    cohort="TCGA",
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)
# Define candidate columns for age and gender
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth']
candidate_gender_cols = ['gender']

# Load clinical data from a previous step
clinical_file_path, _ = tcga_get_relevant_filepaths(tcga_root_dir)
clinical_df = pd.read_table(clinical_file_path, index_col=0)

# Preview age columns
age_preview = {}
for col in candidate_age_cols:
    age_preview[col] = clinical_df[col].head(5).tolist()
print("Age columns preview:")
print(age_preview)

# Preview gender columns  
gender_preview = {}
for col in candidate_gender_cols:
    gender_preview[col] = clinical_df[col].head(5).tolist()
print("\nGender columns preview:")
print(gender_preview)
# Select appropriate demographic columns
age_col = 'age_at_initial_pathologic_diagnosis'  # This is more directly usable than days_to_birth
gender_col = 'gender'

# 1. Extract and standardize clinical features
selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col, gender_col)

# 2. Normalize gene symbols in genetic data
normalized_genetic_df = normalize_gene_symbols_in_index(genetic_df)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_genetic_df.to_csv(out_gene_data_file)

# 3. Link clinical and genetic data
linked_data = pd.merge(selected_clinical_df, normalized_genetic_df.T, left_index=True, right_index=True)

# 4. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 5. Check for bias in trait and demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 6. Validate and save cohort info 
note = f"Sample size after preprocessing: {len(linked_data)}. Number of genes: {len(linked_data.columns) - 3}"
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort="TCGA",
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 7. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)
    print(f"Linked data saved to {out_data_file}")
    print("Shape of final linked data:", linked_data.shape)
else:
    print("Dataset was found to be unusable and was not saved")