File size: 5,109 Bytes
f2fc1fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Red_Hair"
# Input paths
tcga_root_dir = "../DATA/TCGA"
# Output paths
out_data_file = "./output/preprocess/3/Red_Hair/TCGA.csv"
out_gene_data_file = "./output/preprocess/3/Red_Hair/gene_data/TCGA.csv"
out_clinical_data_file = "./output/preprocess/3/Red_Hair/clinical_data/TCGA.csv"
json_path = "./output/preprocess/3/Red_Hair/cohort_info.json"
# 1. Find directory for melanoma data - most relevant to red hair as both involve melanin pathways
selected_dir = 'TCGA_Melanoma_(SKCM)'
cohort_dir = os.path.join(tcga_root_dir, selected_dir)
# 2. Get file paths for clinical and genetic data
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
# 3. Load the data files
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
# 4. Print clinical data columns
print("Clinical data columns:")
print(clinical_df.columns.tolist())
# Record data availability
is_gene_available = len(genetic_df.columns) > 0
is_trait_available = len(clinical_df.columns) > 0
validate_and_save_cohort_info(
is_final=False,
cohort="TCGA",
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# Identify candidate columns
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth']
candidate_gender_cols = ['gender']
# Load clinical data
clinical_file_path, _ = tcga_get_relevant_filepaths(tcga_root_dir)
clinical_df = pd.read_csv(clinical_file_path, index_col=0)
# Extract and preview age columns
age_preview = clinical_df[candidate_age_cols].head()
print("Age columns preview:", preview_df(age_preview))
# Extract and preview gender columns
gender_preview = clinical_df[candidate_gender_cols].head()
print("Gender columns preview:", preview_df(gender_preview))
# 1. Find directory for melanoma data - most relevant to red hair as both involve melanin pathways
selected_dir = 'TCGA_Melanoma_(SKCM)'
cohort_dir = os.path.join(tcga_root_dir, selected_dir)
# 2. Get file paths for clinical and genetic data
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
# 3. Load the data files
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
# 4. Print clinical data columns
print("Clinical data columns:")
print(clinical_df.columns.tolist())
# Record data availability
is_gene_available = len(genetic_df.columns) > 0
is_trait_available = len(clinical_df.columns) > 0
validate_and_save_cohort_info(
is_final=False,
cohort="TCGA",
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# Define candidate columns for age and gender
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth']
candidate_gender_cols = ['gender']
# Load clinical data from a previous step
clinical_file_path, _ = tcga_get_relevant_filepaths(tcga_root_dir)
clinical_df = pd.read_table(clinical_file_path, index_col=0)
# Preview age columns
age_preview = {}
for col in candidate_age_cols:
age_preview[col] = clinical_df[col].head(5).tolist()
print("Age columns preview:")
print(age_preview)
# Preview gender columns
gender_preview = {}
for col in candidate_gender_cols:
gender_preview[col] = clinical_df[col].head(5).tolist()
print("\nGender columns preview:")
print(gender_preview)
# Select appropriate demographic columns
age_col = 'age_at_initial_pathologic_diagnosis' # This is more directly usable than days_to_birth
gender_col = 'gender'
# 1. Extract and standardize clinical features
selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col, gender_col)
# 2. Normalize gene symbols in genetic data
normalized_genetic_df = normalize_gene_symbols_in_index(genetic_df)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_genetic_df.to_csv(out_gene_data_file)
# 3. Link clinical and genetic data
linked_data = pd.merge(selected_clinical_df, normalized_genetic_df.T, left_index=True, right_index=True)
# 4. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 5. Check for bias in trait and demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 6. Validate and save cohort info
note = f"Sample size after preprocessing: {len(linked_data)}. Number of genes: {len(linked_data.columns) - 3}"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort="TCGA",
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 7. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
print(f"Linked data saved to {out_data_file}")
print("Shape of final linked data:", linked_data.shape)
else:
print("Dataset was found to be unusable and was not saved") |