File size: 7,292 Bytes
f2fc1fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Retinoblastoma"
cohort = "GSE110811"
# Input paths
in_trait_dir = "../DATA/GEO/Retinoblastoma"
in_cohort_dir = "../DATA/GEO/Retinoblastoma/GSE110811"
# Output paths
out_data_file = "./output/preprocess/3/Retinoblastoma/GSE110811.csv"
out_gene_data_file = "./output/preprocess/3/Retinoblastoma/gene_data/GSE110811.csv"
out_clinical_data_file = "./output/preprocess/3/Retinoblastoma/clinical_data/GSE110811.csv"
json_path = "./output/preprocess/3/Retinoblastoma/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Yes, this is microarray gene expression data analyzing retinoblastoma tumors
is_gene_available = True
# 2.1 Data Availability
# trait_row=1: anaplasia severity is available in row 1
# age_row=None: age information not available
# gender_row=None: gender information not available
trait_row = 1
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value):
"""Convert anaplasia severity to binary: 1 for severe, 0 for mild/moderate"""
if pd.isna(value):
return None
value = value.split(': ')[1].strip().lower()
if value == 'severe':
return 1
elif value in ['mild', 'moderate']:
return 0
return None
# No age/gender conversion functions needed since data not available
convert_age = None
convert_gender = None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
# Extract clinical features since trait data is available
clinical_df = geo_select_clinical_features(clinical_data,
trait='Anaplasia',
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview extracted features
preview_df(clinical_df)
# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Check gene identifiers
# The row IDs are numeric codes (16657445, etc.) which appear to be probe IDs
# They are not standard human gene symbols (which are typically alphanumeric like BRCA1)
# Therefore mapping to gene symbols is required
requires_gene_mapping = True
# Extract gene annotation data, trying to find the gene symbol section
# More lines start with # in the SOFT file contain the metadata we need
prefixes = ['^', '!'] # Remove '#' from prefix filter to keep those lines
gene_annotation = get_gene_annotation(soft_file_path)
# Check if there are any columns containing gene symbols or names in the SOFT file
def check_string_columns(df):
"""Helper function to check string columns that might contain gene information"""
for col in df.columns:
sample_values = df[col].astype(str).str.contains('[A-Za-z]').sum()
if sample_values > 0:
print(f"\nSample values from {col}:")
print(df[col].dropna().astype(str).unique()[:10])
print("Gene annotation structure:")
print(gene_annotation.head())
print("\nChecking columns for potential gene information:")
check_string_columns(gene_annotation)
# Let's read the raw SOFT file content to examine its structure
import gzip
print("\nExamining SOFT file structure:")
with gzip.open(soft_file_path, 'rt') as f:
# Print first 20 lines that aren't empty
lines = [line.strip() for line in f if line.strip()][:20]
for line in lines:
print(line)
# 1. Use GB_ACC column for gene mapping since it contains RefSeq/GenBank accessions that can be mapped to gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GB_ACC')
# 2. Convert probe-level data to gene-level data using the mapping
# The apply_gene_mapping function will extract gene symbols from accessions
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# 3. Preview data structure and save
print("\nGene expression data after mapping:")
print(gene_data.head())
print("\nShape:", gene_data.shape)
print("\nFirst few gene symbols:", list(gene_data.index)[:5])
# Save gene data
gene_data.to_csv(out_gene_data_file)
# Since gene mapping failed in previous step, we will retry using gene annotation data
# Filter gene annotation to include only entries with NM_ or NR_ accessions
# These are protein-coding and non-coding RNA transcripts that should map to genes
filtered_annotation = gene_annotation[gene_annotation['GB_ACC'].str.contains('NM_|NR_', na=False)]
# Create mapping with probe IDs and accessions
mapping_df = get_gene_mapping(filtered_annotation, prob_col='ID', gene_col='GB_ACC')
# Convert probe-level data to gene-level data using the filtered mapping
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Normalize gene symbols to standardize format
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# Handle missing values systematically
linked_data = handle_missing_values(linked_data, "Anaplasia")
# Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, "Anaplasia")
# Final validation and information saving
note = "Dataset contains gene expression data from primary human retinoblastoma samples profiled with Affymetrix microarray."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |