File size: 7,292 Bytes
f2fc1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Retinoblastoma"
cohort = "GSE110811"

# Input paths
in_trait_dir = "../DATA/GEO/Retinoblastoma"
in_cohort_dir = "../DATA/GEO/Retinoblastoma/GSE110811"

# Output paths
out_data_file = "./output/preprocess/3/Retinoblastoma/GSE110811.csv"
out_gene_data_file = "./output/preprocess/3/Retinoblastoma/gene_data/GSE110811.csv"
out_clinical_data_file = "./output/preprocess/3/Retinoblastoma/clinical_data/GSE110811.csv"
json_path = "./output/preprocess/3/Retinoblastoma/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# Yes, this is microarray gene expression data analyzing retinoblastoma tumors 
is_gene_available = True

# 2.1 Data Availability
# trait_row=1: anaplasia severity is available in row 1
# age_row=None: age information not available 
# gender_row=None: gender information not available
trait_row = 1
age_row = None 
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    """Convert anaplasia severity to binary: 1 for severe, 0 for mild/moderate"""
    if pd.isna(value):
        return None
    value = value.split(': ')[1].strip().lower()
    if value == 'severe':
        return 1
    elif value in ['mild', 'moderate']:
        return 0
    return None

# No age/gender conversion functions needed since data not available
convert_age = None
convert_gender = None

# 3. Save Metadata 
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
# Extract clinical features since trait data is available
clinical_df = geo_select_clinical_features(clinical_data,
                                         trait='Anaplasia',
                                         trait_row=trait_row,
                                         convert_trait=convert_trait,
                                         age_row=age_row,
                                         convert_age=convert_age, 
                                         gender_row=gender_row,
                                         convert_gender=convert_gender)

# Preview extracted features
preview_df(clinical_df)

# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Check gene identifiers
# The row IDs are numeric codes (16657445, etc.) which appear to be probe IDs
# They are not standard human gene symbols (which are typically alphanumeric like BRCA1)
# Therefore mapping to gene symbols is required
requires_gene_mapping = True
# Extract gene annotation data, trying to find the gene symbol section
# More lines start with # in the SOFT file contain the metadata we need
prefixes = ['^', '!']  # Remove '#' from prefix filter to keep those lines
gene_annotation = get_gene_annotation(soft_file_path)

# Check if there are any columns containing gene symbols or names in the SOFT file
def check_string_columns(df):
    """Helper function to check string columns that might contain gene information"""
    for col in df.columns:
        sample_values = df[col].astype(str).str.contains('[A-Za-z]').sum()
        if sample_values > 0:
            print(f"\nSample values from {col}:")
            print(df[col].dropna().astype(str).unique()[:10])

print("Gene annotation structure:")
print(gene_annotation.head())
print("\nChecking columns for potential gene information:")
check_string_columns(gene_annotation)

# Let's read the raw SOFT file content to examine its structure
import gzip
print("\nExamining SOFT file structure:")
with gzip.open(soft_file_path, 'rt') as f:
    # Print first 20 lines that aren't empty
    lines = [line.strip() for line in f if line.strip()][:20]
    for line in lines:
        print(line)
# 1. Use GB_ACC column for gene mapping since it contains RefSeq/GenBank accessions that can be mapped to gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GB_ACC')

# 2. Convert probe-level data to gene-level data using the mapping
# The apply_gene_mapping function will extract gene symbols from accessions
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# 3. Preview data structure and save
print("\nGene expression data after mapping:")
print(gene_data.head())
print("\nShape:", gene_data.shape)
print("\nFirst few gene symbols:", list(gene_data.index)[:5])

# Save gene data
gene_data.to_csv(out_gene_data_file)
# Since gene mapping failed in previous step, we will retry using gene annotation data

# Filter gene annotation to include only entries with NM_ or NR_ accessions
# These are protein-coding and non-coding RNA transcripts that should map to genes
filtered_annotation = gene_annotation[gene_annotation['GB_ACC'].str.contains('NM_|NR_', na=False)]

# Create mapping with probe IDs and accessions
mapping_df = get_gene_mapping(filtered_annotation, prob_col='ID', gene_col='GB_ACC') 

# Convert probe-level data to gene-level data using the filtered mapping
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Normalize gene symbols to standardize format
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# Handle missing values systematically  
linked_data = handle_missing_values(linked_data, "Anaplasia")

# Check for bias in trait and demographic features 
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, "Anaplasia")

# Final validation and information saving
note = "Dataset contains gene expression data from primary human retinoblastoma samples profiled with Affymetrix microarray."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# Save linked data only if usable 
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)