File size: 5,596 Bytes
f2fc1fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Retinoblastoma"
cohort = "GSE208143"
# Input paths
in_trait_dir = "../DATA/GEO/Retinoblastoma"
in_cohort_dir = "../DATA/GEO/Retinoblastoma/GSE208143"
# Output paths
out_data_file = "./output/preprocess/3/Retinoblastoma/GSE208143.csv"
out_gene_data_file = "./output/preprocess/3/Retinoblastoma/gene_data/GSE208143.csv"
out_clinical_data_file = "./output/preprocess/3/Retinoblastoma/clinical_data/GSE208143.csv"
json_path = "./output/preprocess/3/Retinoblastoma/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# From series title and summary, this is mRNA expression data
is_gene_available = True
# 2.1 Data Availability
# Tissue type indicates tumor vs control, maps to trait
trait_row = 0
# Age not available
age_row = None
# Gender is available
gender_row = 1
# 2.2 Data Type Conversion Functions
def convert_trait(x):
# Convert "tissue: X" to binary (1 for tumor, 0 for control)
if not isinstance(x, str):
return None
x = x.lower().split(': ')[-1]
if 'tumor' in x:
return 1
elif 'retina' in x or 'control' in x:
return 0
return None
def convert_gender(x):
# Convert "gender: X" to binary (1 for male, 0 for female)
if not isinstance(x, str):
return None
x = x.lower().split(': ')[-1]
if 'male' in x:
return 1
elif 'female' in x:
return 0
return None
# No convert_age function needed since age data not available
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(False, cohort, json_path, is_gene_available, is_trait_available)
# 4. Clinical Feature Extraction
# Since trait_row is not None, extract clinical features
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview_dict = preview_df(selected_clinical_df)
print("Preview of selected clinical features:")
print(preview_dict)
# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
selected_clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The identifiers starting with "A_19_P" appear to be Agilent microarray probe IDs
# rather than standard human gene symbols (which usually look like "BRCA1", "TP53", etc.)
# These probe IDs will need to be mapped to their corresponding gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# 1. Identify relevant columns - 'ID' matches probe IDs in expression data, 'GENE_SYMBOL' has gene symbols
prob_col = 'ID'
gene_col = 'GENE_SYMBOL'
# 2. Create mapping dataframe with just ID and gene symbol columns
mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
# 3. Convert probe-level measurements to gene-level expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Preview results
print("\nShape of gene expression data after mapping:")
print(gene_data.shape)
print("\nFirst few gene symbols:")
print(list(gene_data.index)[:10])
# Save genetic data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Dataset contains gene expression data from primary human retinoblastoma samples profiled with Affymetrix microarray."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |