File size: 5,183 Bytes
f2fc1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Retinoblastoma"
cohort = "GSE229598"

# Input paths
in_trait_dir = "../DATA/GEO/Retinoblastoma"
in_cohort_dir = "../DATA/GEO/Retinoblastoma/GSE229598"

# Output paths
out_data_file = "./output/preprocess/3/Retinoblastoma/GSE229598.csv"
out_gene_data_file = "./output/preprocess/3/Retinoblastoma/gene_data/GSE229598.csv"
out_clinical_data_file = "./output/preprocess/3/Retinoblastoma/clinical_data/GSE229598.csv"
json_path = "./output/preprocess/3/Retinoblastoma/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# Yes - the series uses Affymetrix array for gene expression profiling
is_gene_available = True

# 2.1 Data Availability 
# Trait: use growth pattern in row 2 since it reflects tumor phenotype
trait_row = 2
# Age and gender are not available in the characteristics data
age_row = None  
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    if pd.isna(value):
        return None
    # Extract value after colon and strip whitespace
    value = value.split(":")[-1].strip().lower()
    # Convert to binary - exophytic vs others
    if value == "exophytic":
        return 1
    elif value in ["mixed", "endophytic"]: 
        return 0
    return None

def convert_age(value):
    # Not available
    return None

def convert_gender(value):
    # Not available 
    return None

# 3. Save Metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Clinical Feature Extraction
# Since trait_row is not None, we need to extract clinical features
clinical_features = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age, 
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview the extracted features
print(preview_df(clinical_features))

# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The identifiers end with "_at", "_i_at", "_f_at", "_g_at" etc which are characteristic of
# Affymetrix probe set IDs used in microarray data. These need to be mapped to official gene symbols.
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)

print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Get gene mapping from annotation - 'ID' has probe IDs matching expression data, 'Gene Symbol' has gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')

# Apply the gene mapping to convert probe-level data to gene expression
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Preview results
print("\nGene expression data preview:")
print(preview_df(gene_data))

# Save gene expression data 
gene_data.to_csv(out_gene_data_file)
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# 1. Normalize gene symbols 
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# 3. Handle missing values systematically  
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and information saving
note = "Dataset contains gene expression data from primary human retinoblastoma samples profiled with Affymetrix microarray."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data only if usable 
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)