File size: 4,547 Bytes
012bb62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Schizophrenia"
cohort = "GSE193818"
# Input paths
in_trait_dir = "../DATA/GEO/Schizophrenia"
in_cohort_dir = "../DATA/GEO/Schizophrenia/GSE193818"
# Output paths
out_data_file = "./output/preprocess/3/Schizophrenia/GSE193818.csv"
out_gene_data_file = "./output/preprocess/3/Schizophrenia/gene_data/GSE193818.csv"
out_clinical_data_file = "./output/preprocess/3/Schizophrenia/clinical_data/GSE193818.csv"
json_path = "./output/preprocess/3/Schizophrenia/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# From the Series description, this is RNA data from blood samples
is_gene_available = True
# 2.1 Data Availability
# All patients have schizophrenia according to Series title/summary
trait_row = None
# Age available in row 1
age_row = 1
# Gender available in row 0
gender_row = 0
# 2.2 Data Type Conversion Functions
def convert_trait(x):
# All samples have schizophrenia, but this row is not available
return None
def convert_age(x):
if pd.isna(x):
return None
try:
# Extract numeric value after colon
age = float(x.split(': ')[1])
return age
except:
return None
def convert_gender(x):
if pd.isna(x):
return None
value = x.split(': ')[1].lower()
if value == 'female':
return 0
elif value == 'male':
return 1
return None
# 3. Save Metadata
# is_trait_available is False since all samples have schizophrenia (constant)
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=False)
# 4. Clinical Feature Extraction skipped since trait_row is None
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The IDs look like Affymetrix probe IDs (e.g., 'AFFX-BkGr-GC03_st')
# These are not standard human gene symbols and will need to be mapped
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and values from annotation dataframe
print("Gene annotation DataFrame preview:")
print(preview_df(gene_annotation))
# The gene expression data uses probe IDs similar to 'AFFX-BkGr-GC03_st'
# The gene annotation contains detailed information about genes in 'SPOT_ID.1'
# We need to extract gene symbols from this field and pair them with IDs
# Get mapping dataframe containing probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='SPOT_ID.1')
# Apply mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
print("Gene data shape:", gene_data.shape)
print("\nFirst few genes and samples:")
print(preview_df(gene_data))
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
print("Gene data shape after normalization:", gene_data.shape)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Mark dataset as unusable due to constant trait
note = "All samples have schizophrenia (constant trait), making the dataset unsuitable for associational studies."
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=True, # Since constant trait = 100% bias
df=gene_data, # Gene data serves as the dataset
note=note
) |