File size: 6,116 Bytes
012bb62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Schizophrenia"
cohort = "GSE285666"

# Input paths
in_trait_dir = "../DATA/GEO/Schizophrenia"
in_cohort_dir = "../DATA/GEO/Schizophrenia/GSE285666"

# Output paths
out_data_file = "./output/preprocess/3/Schizophrenia/GSE285666.csv"
out_gene_data_file = "./output/preprocess/3/Schizophrenia/gene_data/GSE285666.csv"
out_clinical_data_file = "./output/preprocess/3/Schizophrenia/clinical_data/GSE285666.csv"
json_path = "./output/preprocess/3/Schizophrenia/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# Gene Expression Data Availability
# Yes, according to background info "Exon- and gene-Level transcriptional profiling" and "Expression analysis using Affymetrix Human Exon arrays"
is_gene_available = True

# Clinical Data Availability and Conversion
trait_row = 0  # Found trait info in row 0 "disease state"
age_row = None # Age not available
gender_row = None # Gender not available

def convert_trait(value: str) -> int:
    """Convert disease state to binary - controls:0, patients:1"""
    if pd.isna(value) or not isinstance(value, str):
        return None
    value = value.split(": ")[-1].lower()
    if "unaffected" in value or "control" in value:
        return 0
    elif "patient" in value or "williams syndrome" in value:
        return 1
    return None

# Save metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# Extract clinical features since trait data is available
clinical_df = geo_select_clinical_features(clinical_data,
                                         trait=trait,
                                         trait_row=trait_row,
                                         convert_trait=convert_trait)

# Preview the processed clinical data
print("Preview of clinical data:")
print(preview_df(clinical_df))

# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# These appear to be numerical probe IDs, not human gene symbols
# They will need to be mapped to gene symbols before analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Preview column names and values from annotation dataframe
print("Gene annotation DataFrame preview:")
print(preview_df(gene_annotation))
# From observation: 'ID' in gene annotation matches gene identifiers in expression data
# 'gene_assignment' contains gene symbols in the format "RefSeq // GeneSymbol // Description"

# Get mapping between probes and genes 
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')

# Convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Preview the mapped gene data
print("Gene expression data preview after mapping:")
print(gene_data.head())
print("\nShape:", gene_data.shape)

# Save gene data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
print("Gene data shape after normalization:", gene_data.shape)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) 
gene_data.to_csv(out_gene_data_file)

# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
print("\nLinked data shape:", linked_data.shape)

# 3. Handle missing values systematically  
if trait in linked_data.columns:
    linked_data = handle_missing_values(linked_data, trait)

    # 4. Check for bias in trait and demographic features
    trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5. Final validation and information saving
    note = "This dataset contains gene expression data from myxoid liposarcoma samples, with metastasis status as the trait."
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort, 
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=trait_biased,
        df=linked_data,
        note=note
    )

    # 6. Save linked data only if usable and not biased
    if is_usable and not trait_biased:
        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
        linked_data.to_csv(out_data_file)
else:
    # Handle case where clinical features were not properly extracted
    note = "Failed to extract clinical trait information from sample characteristics."
    validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path, 
        is_gene_available=True,
        is_trait_available=False,
        is_biased=None,
        df=None,
        note=note
    )