File size: 4,592 Bytes
012bb62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Sickle_Cell_Anemia"
cohort = "GSE46471"
# Input paths
in_trait_dir = "../DATA/GEO/Sickle_Cell_Anemia"
in_cohort_dir = "../DATA/GEO/Sickle_Cell_Anemia/GSE46471"
# Output paths
out_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/GSE46471.csv"
out_gene_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/gene_data/GSE46471.csv"
out_clinical_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/clinical_data/GSE46471.csv"
json_path = "./output/preprocess/3/Sickle_Cell_Anemia/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Yes, this is a microarray gene expression dataset studying endothelial cells
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# For this specific dataset studying damage pathways in endothelial cells,
# all samples are control samples (no disease state), so trait data is not available
trait_row = None
# No age data available in sample characteristics
age_row = None
# No gender data available in sample characteristics
gender_row = None
# 2.2 Data Type Conversion
def convert_trait(x):
# Not needed since trait data is not available
return None
def convert_age(x):
# Not needed since age data is not available
return None
def convert_gender(x):
# Not needed since gender data is not available
return None
# 3. Save Metadata
# Initial filtering - since trait data is not available (trait_row is None),
# is_trait_available should be False
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=False
)
# 4. Clinical Feature Extraction
# Skip this step since trait_row is None, indicating clinical data is not available
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The gene identifiers in the data appear to be just numeric values (1,2,3...),
# which are not standard human gene symbols. We need to map these to proper gene symbols.
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and values from annotation dataframe
print("Gene annotation DataFrame preview:")
print(preview_df(gene_annotation))
# Extract gene identifiers and gene symbols from the annotation data
id_col = 'ID' # Gene identifiers in the data are numeric values (1,2,3...)
gene_col = 'GENE_SYMBOL' # Gene symbols are stored in GENE_SYMBOL column
# Get mapping between gene identifiers and gene symbols
mapping_data = get_gene_mapping(gene_annotation, id_col, gene_col)
# Convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview the gene data after mapping
print("\nGene expression data after mapping:")
print(gene_data.shape)
print("\nFirst few genes and their expression values:")
print(preview_df(gene_data))
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape)
# Save metadata indicating dataset is not usable due to lack of trait data
note = "Dataset contains normalized gene expression data but lacks trait information."
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=True, # Set to True since no trait data makes it unusable
df=gene_data, # Provide the gene expression data
note=note
) |