File size: 4,592 Bytes
012bb62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Sickle_Cell_Anemia"
cohort = "GSE46471"

# Input paths
in_trait_dir = "../DATA/GEO/Sickle_Cell_Anemia"
in_cohort_dir = "../DATA/GEO/Sickle_Cell_Anemia/GSE46471"

# Output paths
out_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/GSE46471.csv"
out_gene_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/gene_data/GSE46471.csv"
out_clinical_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/clinical_data/GSE46471.csv"
json_path = "./output/preprocess/3/Sickle_Cell_Anemia/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# Yes, this is a microarray gene expression dataset studying endothelial cells
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# For this specific dataset studying damage pathways in endothelial cells,
# all samples are control samples (no disease state), so trait data is not available
trait_row = None 

# No age data available in sample characteristics
age_row = None

# No gender data available in sample characteristics 
gender_row = None

# 2.2 Data Type Conversion
def convert_trait(x):
    # Not needed since trait data is not available
    return None

def convert_age(x):
    # Not needed since age data is not available  
    return None

def convert_gender(x):
    # Not needed since gender data is not available
    return None

# 3. Save Metadata
# Initial filtering - since trait data is not available (trait_row is None), 
# is_trait_available should be False
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=False
)

# 4. Clinical Feature Extraction
# Skip this step since trait_row is None, indicating clinical data is not available
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The gene identifiers in the data appear to be just numeric values (1,2,3...), 
# which are not standard human gene symbols. We need to map these to proper gene symbols.
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Preview column names and values from annotation dataframe
print("Gene annotation DataFrame preview:")
print(preview_df(gene_annotation))
# Extract gene identifiers and gene symbols from the annotation data
id_col = 'ID'  # Gene identifiers in the data are numeric values (1,2,3...)
gene_col = 'GENE_SYMBOL'  # Gene symbols are stored in GENE_SYMBOL column

# Get mapping between gene identifiers and gene symbols
mapping_data = get_gene_mapping(gene_annotation, id_col, gene_col)

# Convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview the gene data after mapping
print("\nGene expression data after mapping:")
print(gene_data.shape)
print("\nFirst few genes and their expression values:")
print(preview_df(gene_data))
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape)

# Save metadata indicating dataset is not usable due to lack of trait data
note = "Dataset contains normalized gene expression data but lacks trait information."
validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True, 
    is_trait_available=False,
    is_biased=True,  # Set to True since no trait data makes it unusable
    df=gene_data,    # Provide the gene expression data
    note=note
)