File size: 4,913 Bytes
012bb62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Sickle_Cell_Anemia"
cohort = "GSE84632"

# Input paths
in_trait_dir = "../DATA/GEO/Sickle_Cell_Anemia"
in_cohort_dir = "../DATA/GEO/Sickle_Cell_Anemia/GSE84632"

# Output paths
out_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/GSE84632.csv"
out_gene_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/gene_data/GSE84632.csv"
out_clinical_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/clinical_data/GSE84632.csv"
json_path = "./output/preprocess/3/Sickle_Cell_Anemia/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
is_gene_available = True  # The title and summary indicate this is gene expression data from PBMCs

# 2.1 Data Availability
trait_row = 2  # Disease status in row 2
age_row = None  # Age not provided
gender_row = None  # Gender not provided

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    """Convert trait information to binary (0: Control, 1: Case)"""
    if value is None or ':' not in value:
        return None
    value = value.split(':')[1].strip().lower()
    if 'sickle cell disease' in value:
        return 1
    return None

def convert_age(value):
    """Convert age to float"""
    return None  # Not used since age data not available

def convert_gender(value): 
    """Convert gender to binary (0: Female, 1: Male)"""
    return None  # Not used since gender data not available

# 3. Save Metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction
if trait_row is not None:
    selected_clinical = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the processed clinical data
    print("Preview of processed clinical data:")
    print(preview_df(selected_clinical))
    
    # Save to CSV
    selected_clinical.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The gene identifiers appear to be array probe IDs (16650001, etc) rather than human gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Preview the dataframe by looking at column names and first few values
print("Gene annotation columns and first few rows:")
for col in gene_annotation.columns:
    print(f"\n{col}:")
    print(list(gene_annotation[col])[:5])
# Step 1: Extract platform table data from SOFT file - look between !Platform_table_begin and !Platform_table_end
platform_table = filter_content_by_prefix(
    soft_file_path,
    prefixes_a=['!Platform_table_begin', '!Platform_table_end'],
    unselect=True,
    source_type='file',
    return_df_a=True
)[0]

# Look at column names to identify probe ID and gene symbol columns
print("Platform table columns:")
print(platform_table.columns)

# Review some sample rows to confirm data format
print("\nSample rows:")
print(platform_table.head())

# Create mapping using probe ID and gene symbol columns
mapping_df = get_gene_mapping(platform_table, 'ID', 'gene_assignment')

# Apply mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Normalize gene symbols to standardized format 
gene_data = normalize_gene_symbols_in_index(gene_data)

print("\nShape of gene expression data after mapping:")
print(gene_data.shape)
print("\nFirst few gene symbols:")
print(list(gene_data.index)[:10])
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Preview column names and values from annotation dataframe
print("Gene annotation DataFrame preview:")
print(preview_df(gene_annotation))