File size: 4,913 Bytes
012bb62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Sickle_Cell_Anemia"
cohort = "GSE84632"
# Input paths
in_trait_dir = "../DATA/GEO/Sickle_Cell_Anemia"
in_cohort_dir = "../DATA/GEO/Sickle_Cell_Anemia/GSE84632"
# Output paths
out_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/GSE84632.csv"
out_gene_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/gene_data/GSE84632.csv"
out_clinical_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/clinical_data/GSE84632.csv"
json_path = "./output/preprocess/3/Sickle_Cell_Anemia/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
is_gene_available = True # The title and summary indicate this is gene expression data from PBMCs
# 2.1 Data Availability
trait_row = 2 # Disease status in row 2
age_row = None # Age not provided
gender_row = None # Gender not provided
# 2.2 Data Type Conversion Functions
def convert_trait(value):
"""Convert trait information to binary (0: Control, 1: Case)"""
if value is None or ':' not in value:
return None
value = value.split(':')[1].strip().lower()
if 'sickle cell disease' in value:
return 1
return None
def convert_age(value):
"""Convert age to float"""
return None # Not used since age data not available
def convert_gender(value):
"""Convert gender to binary (0: Female, 1: Male)"""
return None # Not used since gender data not available
# 3. Save Metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical data
print("Preview of processed clinical data:")
print(preview_df(selected_clinical))
# Save to CSV
selected_clinical.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The gene identifiers appear to be array probe IDs (16650001, etc) rather than human gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Preview the dataframe by looking at column names and first few values
print("Gene annotation columns and first few rows:")
for col in gene_annotation.columns:
print(f"\n{col}:")
print(list(gene_annotation[col])[:5])
# Step 1: Extract platform table data from SOFT file - look between !Platform_table_begin and !Platform_table_end
platform_table = filter_content_by_prefix(
soft_file_path,
prefixes_a=['!Platform_table_begin', '!Platform_table_end'],
unselect=True,
source_type='file',
return_df_a=True
)[0]
# Look at column names to identify probe ID and gene symbol columns
print("Platform table columns:")
print(platform_table.columns)
# Review some sample rows to confirm data format
print("\nSample rows:")
print(platform_table.head())
# Create mapping using probe ID and gene symbol columns
mapping_df = get_gene_mapping(platform_table, 'ID', 'gene_assignment')
# Apply mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Normalize gene symbols to standardized format
gene_data = normalize_gene_symbols_in_index(gene_data)
print("\nShape of gene expression data after mapping:")
print(gene_data.shape)
print("\nFirst few gene symbols:")
print(list(gene_data.index)[:10])
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and values from annotation dataframe
print("Gene annotation DataFrame preview:")
print(preview_df(gene_annotation)) |