File size: 4,456 Bytes
8c96bfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Stomach_Cancer"
cohort = "GSE118916"

# Input paths
in_trait_dir = "../DATA/GEO/Stomach_Cancer"
in_cohort_dir = "../DATA/GEO/Stomach_Cancer/GSE118916"

# Output paths
out_data_file = "./output/preprocess/3/Stomach_Cancer/GSE118916.csv"
out_gene_data_file = "./output/preprocess/3/Stomach_Cancer/gene_data/GSE118916.csv"
out_clinical_data_file = "./output/preprocess/3/Stomach_Cancer/clinical_data/GSE118916.csv"
json_path = "./output/preprocess/3/Stomach_Cancer/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# From background info, this is a microarray gene expression study on GAC tissues
is_gene_available = True

# 2.1 Data Availability
# Trait (cancer vs normal) not explicitly given in sample characteristics
trait_row = None  # No explicit trait data in characteristics
age_row = None  # No age data available
gender_row = 0  # Gender data in row 0

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    # Not needed since trait data not available
    return None

def convert_age(value):
    # Not needed since age data not available  
    return None

def convert_gender(value):
    if pd.isna(value):
        return None
    val = value.split(": ")[1].strip().lower()
    if val == "female":
        return 0
    elif val == "male":
        return 1
    return None

# 3. Save Metadata 
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Clinical Feature Extraction
# Skip since trait_row is None
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The identifiers look like Affymetrix probe IDs (e.g. '11715100_at', '11715101_s_at')
# rather than standard human gene symbols. These will need to be mapped to gene symbols.
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Preview column names and values from annotation dataframe
print("Gene annotation DataFrame preview:")
print(preview_df(gene_annotation))
# Get gene mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')

# Convert probe measurements to gene expression using the mapping
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Normalize gene symbols to ensure consistency
gene_data = normalize_gene_symbols_in_index(gene_data)

# Save gene data to file 
gene_data.to_csv(out_gene_data_file)

# Print some info about the mapped data
print("Gene expression data shape after mapping:", gene_data.shape)
print("\nFirst few gene symbols:")
print(list(gene_data.index)[:10])
# 1. Normalize gene symbols in gene expression data  
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape)

# Create minimal dataframe since no clinical data available
linked_data = gene_data.T  # Transpose to match expected format 
is_biased = True  # Dataset without trait data is unusable for association studies

# Validate and save metadata
note = "Successfully normalized probe-level to gene-level expression using NCBI Gene database. However, no clinical trait data available."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=False,
    is_biased=is_biased,
    df=linked_data,
    note=note
)