File size: 5,978 Bytes
8c96bfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Stomach_Cancer"
cohort = "GSE128459"

# Input paths
in_trait_dir = "../DATA/GEO/Stomach_Cancer"
in_cohort_dir = "../DATA/GEO/Stomach_Cancer/GSE128459"

# Output paths
out_data_file = "./output/preprocess/3/Stomach_Cancer/GSE128459.csv"
out_gene_data_file = "./output/preprocess/3/Stomach_Cancer/gene_data/GSE128459.csv"
out_clinical_data_file = "./output/preprocess/3/Stomach_Cancer/clinical_data/GSE128459.csv"
json_path = "./output/preprocess/3/Stomach_Cancer/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# Yes, this dataset contains gene expression data based on background description mentioning "transcriptomic analysis"
is_gene_available = True  

# 2.1 Determine availability of trait, age and gender data
trait_row = 0  # Available from tissue field, even though all samples are cancer
age_row = None # Not provided in sample characteristics 
gender_row = None # Not provided in sample characteristics

# 2.2 Data type conversion functions
def convert_trait(value):
    """Convert tissue type to binary: 1 for cancer, 0 for normal"""
    if not isinstance(value, str):
        return None
    if ':' in value:
        value = value.split(':')[1].strip().lower()
    if 'cancer' in value:
        return 1
    elif 'normal' in value:
        return 0
    return None

# Age and gender conversion functions not needed as data not available
convert_age = None
convert_gender = None

# 3. Save initial metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Extract clinical features since trait data is available
clinical_df = geo_select_clinical_features(clinical_data, 
                                         trait=trait,
                                         trait_row=trait_row,
                                         convert_trait=convert_trait)

# Preview the processed clinical data
print("Preview of clinical data:")
print(preview_df(clinical_df))

# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The gene identifiers have "ILMN_" prefix, indicating they are Illumina probe IDs
# These need to be mapped to standard human gene symbols for downstream analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Preview column names and values from annotation dataframe
print("Gene annotation DataFrame preview:")
print(preview_df(gene_annotation))
# 1. Identify the relevant columns from gene annotation
# The 'ID' column in the annotation matches the probe IDs in the gene expression data (ILMN_*)
# The 'Symbol' column contains the gene symbols we want to map to
probe_col = 'ID'
gene_col = 'Symbol'

# 2. Get the gene mapping dataframe
gene_mapping = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_col)

# 3. Apply the mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, gene_mapping)

# Preview the mapped gene expression data
print("Gene expression data after mapping:")
print(gene_data.head())
print("\nShape:", gene_data.shape)
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape) 

# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)

# 2. Link clinical and genetic data using normalized gene-level data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
print("\nLinked data shape:", linked_data.shape)

# 3. Handle missing values systematically  
if trait in linked_data.columns:
    linked_data = handle_missing_values(linked_data, trait)

    # 4. Check for bias in trait and demographic features
    trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5. Final validation and information saving
    note = "Data was successfully preprocessed from probe-level to gene-level expression using gene symbol normalization with NCBI Gene database."
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort, 
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=trait_biased,
        df=linked_data,
        note=note
    )

    # 6. Save linked data only if usable and not biased
    if is_usable and not trait_biased:
        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
        linked_data.to_csv(out_data_file)