File size: 6,178 Bytes
8c96bfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Stomach_Cancer"
cohort = "GSE130823"
# Input paths
in_trait_dir = "../DATA/GEO/Stomach_Cancer"
in_cohort_dir = "../DATA/GEO/Stomach_Cancer/GSE130823"
# Output paths
out_data_file = "./output/preprocess/3/Stomach_Cancer/GSE130823.csv"
out_gene_data_file = "./output/preprocess/3/Stomach_Cancer/gene_data/GSE130823.csv"
out_clinical_data_file = "./output/preprocess/3/Stomach_Cancer/clinical_data/GSE130823.csv"
json_path = "./output/preprocess/3/Stomach_Cancer/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Based on the background information mentioning "RNA expression profiles" and "Agilent Microarray",
# this dataset contains gene expression data
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# Trait: From background info, samples are gastric cancer vs control
trait_row = 0 # 'tissue' field contains this info
# Age: Available in row 2 with numeric values
age_row = 2
# Gender: Available in row 1
gender_row = 1
def convert_trait(value: str) -> int:
val = value.split(':')[1].strip().lower()
# If explicitly mentioned as cancer/lesion, it's a case
if any(x in val for x in ['cancer', 'lesion']):
return 1
# Otherwise it's a control
elif 'gastric' in val:
return 0
return None
def convert_age(value: str) -> float:
try:
# Extract numeric value after colon
return float(value.split(':')[1].strip())
except:
return None
def convert_gender(value: str) -> int:
val = value.split(':')[1].strip().lower()
if val == 'female':
return 0
elif val == 'male':
return 1
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical data
preview = preview_df(clinical_features)
print("Preview of clinical features:")
print(preview)
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Based on review of the gene identifiers like "(+)E1A_r60_1", "A_19_P00315452" etc.,
# these appear to be probe IDs rather than standardized gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and values from annotation dataframe
print("Gene annotation DataFrame preview:")
print(preview_df(gene_annotation))
# 1. After reviewing the annotation data, 'ID' column matches probe IDs in gene expression data,
# and 'GENE_SYMBOL' contains corresponding gene symbols
# 2. Get mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
# 3. Apply the mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Print preview to verify the mapping result
print("Gene expression data after mapping:")
print(gene_data.head())
print("\nShape after mapping:", gene_data.shape)
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape)
# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)
# 2. Link clinical and genetic data using normalized gene-level data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
print("\nLinked data shape:", linked_data.shape)
# 3. Handle missing values systematically
if trait in linked_data.columns:
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Data was successfully preprocessed from probe-level to gene-level expression using gene symbol normalization with NCBI Gene database."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable and not biased
if is_usable and not trait_biased:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |