File size: 5,361 Bytes
6f366b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Stroke"
cohort = "GSE125771"
# Input paths
in_trait_dir = "../DATA/GEO/Stroke"
in_cohort_dir = "../DATA/GEO/Stroke/GSE125771"
# Output paths
out_data_file = "./output/preprocess/3/Stroke/GSE125771.csv"
out_gene_data_file = "./output/preprocess/3/Stroke/gene_data/GSE125771.csv"
out_clinical_data_file = "./output/preprocess/3/Stroke/clinical_data/GSE125771.csv"
json_path = "./output/preprocess/3/Stroke/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on Series_summary and methods description, this is a gene expression microarray dataset
is_gene_available = True
# 2.1 Data Availability
# Trait: Controls not found - all samples are carotid atherosclerotic plaques from patients with >50% stenosis
trait_row = None
# Age: Feature 3 contains age data
age_row = 3
# Gender: Feature 2 contains sex data
gender_row = 2
# 2.2 Data Type Conversion Functions
def convert_trait(x):
# Not used since trait_row is None
return None
def convert_age(x):
# Extract numeric age value after colon
try:
age = float(x.split(': ')[1])
return age
except:
return None
def convert_gender(x):
# Convert sex to binary (Female=0, Male=1)
try:
sex = x.split(': ')[1].strip()
if sex == 'Female':
return 0
elif sex == 'Male':
return 1
return None
except:
return None
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=False # trait_row is None
)
# 4. Skip clinical feature extraction since trait_row is None
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# The identifiers (e.g. TC01000001.hg.1) appear to be probe IDs from a microarray platform
# rather than standard human gene symbols. They need to be mapped to gene symbols.
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)
# Preview annotation data to identify columns for mapping
print("Gene Annotation Preview (first 5 rows):")
print(preview_df(gene_metadata))
# From the output we can see:
# - 'ID' column contains probe IDs that match our expression data
# - 'gene_assignment' column has gene symbol information
# We'll use these columns for mapping probe IDs to gene symbols
# Keep columns needed for mapping
mapping_cols = ['ID', 'gene_assignment']
gene_metadata = gene_metadata[mapping_cols]
# Print shape of annotation data
print(f"\nShape of gene annotation data: {gene_metadata.shape}")
# Extract ID and gene symbol mapping
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')
# Apply mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Print shape and preview data to verify mapping worked
print("Shape of mapped gene expression data:", gene_data.shape)
print("\nFirst few rows of mapped gene data:")
print(gene_data.head())
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# Create a minimal DataFrame with gene data and set trait as missing
linked_data = pd.DataFrame(index=gene_data.columns)
linked_data[trait] = None
# Add gene expression data
linked_data = pd.concat([linked_data.T, gene_data]).T
# Set bias flag for validation
trait_biased = True # Missing trait data means it cannot be used for trait analysis
# Validate and record dataset info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=trait_biased,
df=linked_data,
note="Gene expression data available but no stroke phenotype information found in dataset."
) |