File size: 5,361 Bytes
6f366b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Stroke"
cohort = "GSE125771"

# Input paths
in_trait_dir = "../DATA/GEO/Stroke"
in_cohort_dir = "../DATA/GEO/Stroke/GSE125771"

# Output paths
out_data_file = "./output/preprocess/3/Stroke/GSE125771.csv"
out_gene_data_file = "./output/preprocess/3/Stroke/gene_data/GSE125771.csv"
out_clinical_data_file = "./output/preprocess/3/Stroke/clinical_data/GSE125771.csv"
json_path = "./output/preprocess/3/Stroke/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on Series_summary and methods description, this is a gene expression microarray dataset
is_gene_available = True

# 2.1 Data Availability
# Trait: Controls not found - all samples are carotid atherosclerotic plaques from patients with >50% stenosis
trait_row = None  

# Age: Feature 3 contains age data
age_row = 3

# Gender: Feature 2 contains sex data
gender_row = 2

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    # Not used since trait_row is None
    return None

def convert_age(x):
    # Extract numeric age value after colon
    try:
        age = float(x.split(': ')[1])
        return age
    except:
        return None

def convert_gender(x):
    # Convert sex to binary (Female=0, Male=1)
    try:
        sex = x.split(': ')[1].strip()
        if sex == 'Female':
            return 0
        elif sex == 'Male':
            return 1
        return None
    except:
        return None

# 3. Save Metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=False  # trait_row is None
)

# 4. Skip clinical feature extraction since trait_row is None
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# The identifiers (e.g. TC01000001.hg.1) appear to be probe IDs from a microarray platform
# rather than standard human gene symbols. They need to be mapped to gene symbols.
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)

# Preview annotation data to identify columns for mapping
print("Gene Annotation Preview (first 5 rows):")
print(preview_df(gene_metadata))

# From the output we can see:
# - 'ID' column contains probe IDs that match our expression data
# - 'gene_assignment' column has gene symbol information 
# We'll use these columns for mapping probe IDs to gene symbols

# Keep columns needed for mapping
mapping_cols = ['ID', 'gene_assignment'] 
gene_metadata = gene_metadata[mapping_cols]

# Print shape of annotation data
print(f"\nShape of gene annotation data: {gene_metadata.shape}")
# Extract ID and gene symbol mapping
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')

# Apply mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Print shape and preview data to verify mapping worked
print("Shape of mapped gene expression data:", gene_data.shape)
print("\nFirst few rows of mapped gene data:")
print(gene_data.head())
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data) 
gene_data.to_csv(out_gene_data_file)

# Create a minimal DataFrame with gene data and set trait as missing
linked_data = pd.DataFrame(index=gene_data.columns)
linked_data[trait] = None

# Add gene expression data
linked_data = pd.concat([linked_data.T, gene_data]).T

# Set bias flag for validation
trait_biased = True  # Missing trait data means it cannot be used for trait analysis

# Validate and record dataset info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True, 
    is_trait_available=False,
    is_biased=trait_biased,
    df=linked_data,
    note="Gene expression data available but no stroke phenotype information found in dataset."
)