File size: 4,801 Bytes
8c96bfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Stroke"
cohort = "GSE273225"
# Input paths
in_trait_dir = "../DATA/GEO/Stroke"
in_cohort_dir = "../DATA/GEO/Stroke/GSE273225"
# Output paths
out_data_file = "./output/preprocess/3/Stroke/GSE273225.csv"
out_gene_data_file = "./output/preprocess/3/Stroke/gene_data/GSE273225.csv"
out_clinical_data_file = "./output/preprocess/3/Stroke/clinical_data/GSE273225.csv"
json_path = "./output/preprocess/3/Stroke/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# From series description, this study uses nCounter for gene expression analysis of 579 immune system genes
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# Trait: Looking at donor cause of death in Feature 7, can identify stroke cases
trait_row = 7
def convert_trait(x):
if not x or ':' not in x:
return None
value = x.split(': ')[1].lower()
# Convert to binary: 1 for ischemic stroke, 0 for other causes
return 1 if 'ischemic stroke' in value else 0
# Age: Available in Feature 3
age_row = 3
def convert_age(x):
if not x or ':' not in x:
return None
value = x.split(': ')[1]
try:
return float(value)
except:
return None
# Gender: Available in Feature 4
gender_row = 4
def convert_gender(x):
if not x or ':' not in x:
return None
value = x.split(': ')[1].lower()
return 1 if value == 'male' else 0 if value == 'female' else None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
print("Preview of extracted clinical features:")
print(preview_df(clinical_features))
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# The identifiers are already human gene symbols (e.g. ABCB1, ABCF1, ABL1, ADA, AHR)
# No mapping needed
requires_gene_mapping = False
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Study examining transcriptome profiles in lung transplantation."
)
# 6. Save if usable
if is_usable:
linked_data.to_csv(out_data_file) |