File size: 5,737 Bytes
8c96bfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Stroke"
cohort = "GSE37587"

# Input paths
in_trait_dir = "../DATA/GEO/Stroke"
in_cohort_dir = "../DATA/GEO/Stroke/GSE37587"

# Output paths
out_data_file = "./output/preprocess/3/Stroke/GSE37587.csv"
out_gene_data_file = "./output/preprocess/3/Stroke/gene_data/GSE37587.csv"
out_clinical_data_file = "./output/preprocess/3/Stroke/clinical_data/GSE37587.csv"
json_path = "./output/preprocess/3/Stroke/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes, this dataset contains gene expression data from peripheral blood samples
is_gene_available = True

# 2.1 Data Availability
# Trait data is in Feature 6 "disease state"
trait_row = 6
# Age data is in Feature 0
age_row = 0
# Gender data is in Feature 4 
gender_row = 4

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    # Binary: 1 for stroke, 0 for control
    # But all samples are stroke cases, so this is not useful
    return None

def convert_age(x):
    # Continuous
    try:
        return int(x.split(': ')[1])
    except:
        pass
    return None

def convert_gender(x):
    # Binary: 0 for female, 1 for male
    try:
        gender = x.split(': ')[1].lower()
        if gender == 'female':
            return 0
        elif gender == 'male':
            return 1
    except:
        pass
    return None

# 3. Save Metadata 
# Initial filtering - trait data not usable since all samples have stroke
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=False
)

# 4. Clinical Feature Extraction skipped since trait data not usable
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# The identifiers starting with ILMN_ indicate these are Illumina probe IDs
# rather than standard human gene symbols. These need to be mapped.
requires_gene_mapping = True
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene annotation from SOFT file 
gene_annotation = get_gene_annotation(soft_file)

# Preview annotation dataframe structure
print("Gene Annotation Preview:")
print("Column names:", gene_annotation.columns.tolist())
print("\nFirst few rows as dictionary:")
print(preview_df(gene_annotation))
# Extract mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')

# Apply gene mapping to get gene expression data 
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Create a dummy DataFrame with the same size as gene expression data
# All samples are stroke cases (value 1)
dummy_clinical = pd.DataFrame({'Stroke': [1]*gene_data.shape[1], 
                             'Age': gene_data.iloc[0].values,  # Use first row to match size 
                             'Gender': gene_data.iloc[1].values}, # Use second row to match size
                             index=gene_data.columns)
dummy_data = geo_link_clinical_genetic_data(dummy_clinical, gene_data)

# Evaluate bias - will be biased since all samples are stroke cases
is_biased, dummy_data = judge_and_remove_biased_features(dummy_data, 'Stroke')

# Save cohort info indicating severe bias
is_usable = validate_and_save_cohort_info(
    is_final=True, 
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=False,
    is_biased=True, 
    df=dummy_data,
    note="Study examining transcriptome profiles from peripheral blood of stroke patients. Not usable for trait analysis since all samples are stroke cases."
)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2-6. Record dataset as not usable for trait analysis 
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=True,
    is_trait_available=False,
    is_biased=True,
    df=gene_data,
    note="Study examining transcriptome profiles from peripheral blood of stroke patients. Not usable for trait analysis since all samples are stroke cases."
)