File size: 2,005 Bytes
8c96bfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Stroke"
cohort = "GSE38571"
# Input paths
in_trait_dir = "../DATA/GEO/Stroke"
in_cohort_dir = "../DATA/GEO/Stroke/GSE38571"
# Output paths
out_data_file = "./output/preprocess/3/Stroke/GSE38571.csv"
out_gene_data_file = "./output/preprocess/3/Stroke/gene_data/GSE38571.csv"
out_clinical_data_file = "./output/preprocess/3/Stroke/clinical_data/GSE38571.csv"
json_path = "./output/preprocess/3/Stroke/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Although gene expression data exists, it's for lung cell differentiation, not stroke-related
is_gene_available = False
# 2.1 Data Availability
# No suitable trait data found in characteristics
trait_row = None
# Only one gender value (all male) so gender is not useful
gender_row = None
# No age data available
age_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(x):
return None # Not used since trait_row is None
def convert_age(x):
return None # Not used since age_row is None
def convert_gender(x):
return None # Not used since gender_row is None
# 3. Save metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Skip clinical feature extraction since trait_row is None |