File size: 6,797 Bytes
6f366b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Substance_Use_Disorder"
cohort = "GSE116833"

# Input paths
in_trait_dir = "../DATA/GEO/Substance_Use_Disorder"
in_cohort_dir = "../DATA/GEO/Substance_Use_Disorder/GSE116833"

# Output paths
out_data_file = "./output/preprocess/3/Substance_Use_Disorder/GSE116833.csv"
out_gene_data_file = "./output/preprocess/3/Substance_Use_Disorder/gene_data/GSE116833.csv"
out_clinical_data_file = "./output/preprocess/3/Substance_Use_Disorder/clinical_data/GSE116833.csv"
json_path = "./output/preprocess/3/Substance_Use_Disorder/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
is_gene_available = True  # The background info shows it used HumanHT-12 v4.0 Gene Expression BeadChip

# 2.1 Data Availability 
# trait info can be found in key 0 showing anhedonia levels
trait_row = 0  
# age info found in key 2
age_row = 2  
# gender info found in key 1
gender_row = 1

# 2.2 Data Type Conversion
def convert_trait(x):
    """Convert anhedonia level to binary: high=1, low=0"""
    if not isinstance(x, str):
        return None
    val = x.split(': ')[1].lower() if ': ' in x else x.lower()
    if 'high' in val:
        return 1
    elif 'low' in val:
        return 0
    return None

def convert_age(x):
    """Convert age to continuous numeric value"""
    if not isinstance(x, str):
        return None
    try:
        return float(x.split(': ')[1])
    except:
        return None

def convert_gender(x):
    """Convert gender to binary: female=0, male=1"""
    if not isinstance(x, str):
        return None
    val = x.split(': ')[1].lower() if ': ' in x else x.lower()
    if 'female' in val:
        return 0
    elif 'male' in val:
        return 1
    return None

# 3. Save Metadata
# Initial filtering based on trait and gene data availability
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, 
                            is_gene_available=is_gene_available, 
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction 
# Since trait_row is not None, we extract clinical features
clinical_df = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait,
                                         age_row, convert_age,
                                         gender_row, convert_gender)

# Preview the extracted features
preview_result = preview_df(clinical_df)

# Save clinical features to CSV
clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# ILMN_ prefix indicates these are Illumina array probe IDs, not gene symbols
# These need to be mapped to human gene symbols for analysis
requires_gene_mapping = True
# First inspect where platform data begins
print("Looking for platform data section:")
with gzip.open(soft_file_path, 'rt') as f:
    for i, line in enumerate(f):
        if "!Platform_table_begin" in line or "^PLATFORM" in line:
            print(f"Found platform marker at line {i}:")
            print(line.strip())
            # Print next few lines to see format
            for _ in range(5):
                print(next(f).strip())
            break

print("\nExtracting gene annotations...")
# Use library function to extract annotations
gene_annotation = get_gene_annotation(soft_file_path)

# Extract ID and Symbol columns which we need for mapping
mapping_df = gene_annotation[['ID', 'Symbol']].copy()

print("\nMapping data preview:")
preview = preview_df(mapping_df)
print(preview)

print("\nShape of mapping data:", mapping_df.shape)
print("Number of non-null Symbols:", mapping_df['Symbol'].count())
# Prepare mapping dataframe with correct column names
mapping_df = mapping_df.rename(columns={'Symbol': 'Gene'})

# Map probe IDs to gene symbols using predefined function 
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Normalize gene symbols to their official HGNC names and combine rows with same gene symbol
gene_data = normalize_gene_symbols_in_index(gene_data)

# Save gene expression data
gene_data.to_csv(out_gene_data_file)

# Print shape and preview after mapping
print("Shape after mapping:", gene_data.shape)
print("\nPreview of first few rows after mapping:")
print(preview_df(gene_data))
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape) 

# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)

# 2. Link clinical and genetic data using normalized gene-level data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
print("\nLinked data shape:", linked_data.shape)

# 3. Handle missing values systematically  
if trait in linked_data.columns:
    linked_data = handle_missing_values(linked_data, trait)

    # 4. Check for bias in trait and demographic features
    trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5. Final validation and information saving
    note = "Data was successfully preprocessed from probe-level to gene-level expression using gene symbol normalization with NCBI Gene database."
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort, 
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=trait_biased,
        df=linked_data,
        note=note
    )

    # 6. Save linked data only if usable and not biased
    if is_usable and not trait_biased:
        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
        linked_data.to_csv(out_data_file)