File size: 5,856 Bytes
6f366b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Substance_Use_Disorder"
cohort = "GSE125681"

# Input paths
in_trait_dir = "../DATA/GEO/Substance_Use_Disorder"
in_cohort_dir = "../DATA/GEO/Substance_Use_Disorder/GSE125681"

# Output paths
out_data_file = "./output/preprocess/3/Substance_Use_Disorder/GSE125681.csv"
out_gene_data_file = "./output/preprocess/3/Substance_Use_Disorder/gene_data/GSE125681.csv"
out_clinical_data_file = "./output/preprocess/3/Substance_Use_Disorder/clinical_data/GSE125681.csv"
json_path = "./output/preprocess/3/Substance_Use_Disorder/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
is_gene_available = True  # Based on Series summary mentioning "gene expression profile"

# 2.1 Data Keys for Clinical Features
trait_row = 3  # 'sud' contains trait information 
age_row = 0    # Age information available
gender_row = 1 # Gender information available

# 2.2 Data Type Conversion Functions
def convert_trait(x: str) -> Optional[int]:
    if not isinstance(x, str):
        return None
    val = x.split(': ')[-1].strip().upper()
    if val == 'SUD':
        return 1
    elif val == 'WITHOUT SUD':
        return 0
    return None

def convert_age(x: str) -> Optional[float]:
    if not isinstance(x, str):
        return None
    try:
        return float(x.split(': ')[-1])
    except:
        return None

def convert_gender(x: str) -> Optional[int]:
    if not isinstance(x, str):
        return None
    val = x.split(': ')[-1].strip().upper()
    if val == 'MALE':
        return 1
    elif val == 'FEMALE':
        return 0
    return None

# 3. Save Metadata
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=trait_row is not None)

# 4. Clinical Feature Extraction
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    print("Preview of selected clinical features:")
    print(preview_df(selected_clinical_df))
    
    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
    selected_clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
requires_gene_mapping = True
# Extract gene annotation from SOFT file 
gene_annotation = get_gene_annotation(soft_file_path)

# Preview annotation structure
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# 1. The gene expression data uses IDs that match with 'ID' column in annotation
# The gene symbols are in the 'Symbol' column

# 2. Get gene mapping dataframe with relevant columns
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')

# 3. Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, gene_mapping)
print("\nGene data shape after mapping:", gene_data.shape)
print("\nPreview of first few genes and their expression values:")
print(preview_df(gene_data))
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape) 

# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)

# 2. Link clinical and genetic data using normalized gene-level data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
print("\nLinked data shape:", linked_data.shape)

# 3. Handle missing values systematically  
if trait in linked_data.columns:
    linked_data = handle_missing_values(linked_data, trait)

    # 4. Check for bias in trait and demographic features
    trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5. Final validation and information saving
    note = "Data was successfully preprocessed from probe-level to gene-level expression using gene symbol normalization with NCBI Gene database."
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort, 
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=trait_biased,
        df=linked_data,
        note=note
    )

    # 6. Save linked data only if usable and not biased
    if is_usable and not trait_biased:
        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
        linked_data.to_csv(out_data_file)