File size: 6,453 Bytes
6f366b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Telomere_Length"
cohort = "GSE16058"
# Input paths
in_trait_dir = "../DATA/GEO/Telomere_Length"
in_cohort_dir = "../DATA/GEO/Telomere_Length/GSE16058"
# Output paths
out_data_file = "./output/preprocess/3/Telomere_Length/GSE16058.csv"
out_gene_data_file = "./output/preprocess/3/Telomere_Length/gene_data/GSE16058.csv"
out_clinical_data_file = "./output/preprocess/3/Telomere_Length/clinical_data/GSE16058.csv"
json_path = "./output/preprocess/3/Telomere_Length/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Yes, this is gene expression data studying cell proliferation and aging, not miRNA or methylation
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Row identification
trait_row = 3 # Growth status indicates senescence state and telomere length
age_row = 2 # Passage number indicates cellular age
gender_row = None # No gender information available
# 2.2 Data type conversion functions
def convert_trait(value: str) -> float:
"""Convert growth status to binary: 1 for senescent/aged states, 0 for growing states"""
if not value or ':' not in value:
return None
status = value.split(': ')[1].lower()
if 'senescent' in status or 'stasis' in status or 'agonesence' in status:
return 1.0
elif 'growing' in status or 'intermediate' in status:
return 0.0
return None
def convert_age(value: str) -> float:
"""Extract passage number as continuous value"""
if not value or ':' not in value:
return None
try:
# Extract number before 'p'
passage = value.split(': ')[1]
return float(passage.replace('p',''))
except:
return None
def convert_gender(value: str) -> float:
"""Not used since gender data is unavailable"""
return None
# 3. Save metadata
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Extract clinical features
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
print("\nExtracted clinical features preview:")
print(preview_df(selected_clinical))
# Save to file
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
selected_clinical.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The identifiers in ID column are from the Affymetrix platform, ending in "_at" format
# They need to be mapped to official gene symbols for interpretability
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview annotation structure
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# 1. Identify relevant columns: 'ID' contains probe IDs and 'Gene Symbol' contains gene symbols
probe_col = 'ID'
gene_col = 'Gene Symbol'
# 2. Get gene mapping dataframe
gene_mapping = get_gene_mapping(gene_annotation, probe_col, gene_col)
# 3. Convert probe-level measurements to gene-level measurements
gene_data = apply_gene_mapping(genetic_data, gene_mapping)
# Preview results
print("\nGene expression data shape after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
print("\nFirst few gene symbols:", list(gene_data.index)[:10])
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape)
# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)
# 2. Link clinical and genetic data using normalized gene-level data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
print("\nLinked data shape:", linked_data.shape)
# 3. Handle missing values systematically
if trait in linked_data.columns:
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Data was successfully preprocessed from probe-level to gene-level expression using gene symbol normalization with NCBI Gene database."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable and not biased
if is_usable and not trait_biased:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |