File size: 6,453 Bytes
6f366b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Telomere_Length"
cohort = "GSE16058"

# Input paths
in_trait_dir = "../DATA/GEO/Telomere_Length"
in_cohort_dir = "../DATA/GEO/Telomere_Length/GSE16058"

# Output paths
out_data_file = "./output/preprocess/3/Telomere_Length/GSE16058.csv"
out_gene_data_file = "./output/preprocess/3/Telomere_Length/gene_data/GSE16058.csv"
out_clinical_data_file = "./output/preprocess/3/Telomere_Length/clinical_data/GSE16058.csv"
json_path = "./output/preprocess/3/Telomere_Length/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())

print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# Yes, this is gene expression data studying cell proliferation and aging, not miRNA or methylation
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Row identification
trait_row = 3  # Growth status indicates senescence state and telomere length
age_row = 2  # Passage number indicates cellular age
gender_row = None  # No gender information available

# 2.2 Data type conversion functions
def convert_trait(value: str) -> float:
    """Convert growth status to binary: 1 for senescent/aged states, 0 for growing states"""
    if not value or ':' not in value:
        return None
    status = value.split(': ')[1].lower()
    if 'senescent' in status or 'stasis' in status or 'agonesence' in status:
        return 1.0
    elif 'growing' in status or 'intermediate' in status:
        return 0.0
    return None

def convert_age(value: str) -> float:
    """Extract passage number as continuous value"""
    if not value or ':' not in value:
        return None
    try:
        # Extract number before 'p'
        passage = value.split(': ')[1]
        return float(passage.replace('p',''))
    except:
        return None

def convert_gender(value: str) -> float:
    """Not used since gender data is unavailable"""
    return None

# 3. Save metadata 
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Extract clinical features
if trait_row is not None:
    selected_clinical = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    print("\nExtracted clinical features preview:")
    print(preview_df(selected_clinical))
    
    # Save to file
    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
    selected_clinical.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The identifiers in ID column are from the Affymetrix platform, ending in "_at" format
# They need to be mapped to official gene symbols for interpretability
requires_gene_mapping = True
# Extract gene annotation from SOFT file 
gene_annotation = get_gene_annotation(soft_file_path)

# Preview annotation structure
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# 1. Identify relevant columns: 'ID' contains probe IDs and 'Gene Symbol' contains gene symbols
probe_col = 'ID'
gene_col = 'Gene Symbol'

# 2. Get gene mapping dataframe
gene_mapping = get_gene_mapping(gene_annotation, probe_col, gene_col)

# 3. Convert probe-level measurements to gene-level measurements
gene_data = apply_gene_mapping(genetic_data, gene_mapping)

# Preview results
print("\nGene expression data shape after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
print("\nFirst few gene symbols:", list(gene_data.index)[:10])
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape) 

# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)

# 2. Link clinical and genetic data using normalized gene-level data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
print("\nLinked data shape:", linked_data.shape)

# 3. Handle missing values systematically  
if trait in linked_data.columns:
    linked_data = handle_missing_values(linked_data, trait)

    # 4. Check for bias in trait and demographic features
    trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5. Final validation and information saving
    note = "Data was successfully preprocessed from probe-level to gene-level expression using gene symbol normalization with NCBI Gene database."
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort, 
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=trait_biased,
        df=linked_data,
        note=note
    )

    # 6. Save linked data only if usable and not biased
    if is_usable and not trait_biased:
        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
        linked_data.to_csv(out_data_file)