File size: 6,200 Bytes
6f366b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Telomere_Length"
cohort = "GSE52237"

# Input paths
in_trait_dir = "../DATA/GEO/Telomere_Length"
in_cohort_dir = "../DATA/GEO/Telomere_Length/GSE52237"

# Output paths
out_data_file = "./output/preprocess/3/Telomere_Length/GSE52237.csv"
out_gene_data_file = "./output/preprocess/3/Telomere_Length/gene_data/GSE52237.csv"
out_clinical_data_file = "./output/preprocess/3/Telomere_Length/clinical_data/GSE52237.csv"
json_path = "./output/preprocess/3/Telomere_Length/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())

print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# Based on background info, this is a study of gene expression and telomere length in airway epithelium
is_gene_available = True

# 2.1 Data Availability
# Smoking status can be used as trait since it's binary and complete
trait_row = 0  

# Age and gender not available in sample characteristics
age_row = None
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    if pd.isna(value):
        return None
    # Extract value after colon and strip whitespace
    value = value.split(':')[1].strip()
    # Convert smoking status to binary (0=nonsmoker, 1=smoker)
    if value == 'nonsmoker':
        return 0
    elif value in ['smoker', 'S']:
        return 1
    return None

def convert_age(value):
    # Not needed as age data unavailable
    return None

def convert_gender(value):
    # Not needed as gender data unavailable
    return None

# 3. Save Metadata
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=True)

# 4. Extract Clinical Features
# Use the geo_select_clinical_features function
clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
                                         trait=trait,
                                         trait_row=trait_row,
                                         convert_trait=convert_trait,
                                         age_row=age_row,
                                         convert_age=convert_age,
                                         gender_row=gender_row,
                                         convert_gender=convert_gender)

# Preview the extracted features
print("Preview of clinical features:")
print(preview_df(clinical_df))

# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Review the gene identifiers
# The IDs like "1007_s_at", "1053_at", etc. are Affymetrix probe IDs 
# from the HG-U133 array, not standard human gene symbols
# They need to be mapped to gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation from SOFT file 
gene_annotation = get_gene_annotation(soft_file_path)

# Preview annotation structure
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# From the preview, 'ID' column matches the probe IDs in expression data
# 'Gene Symbol' column contains the gene symbols to map to
mapping_df = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol') 

# Convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Preview the converted gene data 
print("Gene expression data preview:")
print(gene_data.head())
print("\nShape:", gene_data.shape) 

# Save the gene data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape) 

# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)

# 2. Link clinical and genetic data using normalized gene-level data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
print("\nLinked data shape:", linked_data.shape)

# 3. Handle missing values systematically  
if trait in linked_data.columns:
    linked_data = handle_missing_values(linked_data, trait)

    # 4. Check for bias in trait and demographic features
    trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5. Final validation and information saving
    note = "Data was successfully preprocessed from probe-level to gene-level expression using gene symbol normalization with NCBI Gene database."
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort, 
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=trait_biased,
        df=linked_data,
        note=note
    )

    # 6. Save linked data only if usable and not biased
    if is_usable and not trait_biased:
        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
        linked_data.to_csv(out_data_file)