File size: 5,410 Bytes
6f366b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Telomere_Length"
cohort = "GSE80435"

# Input paths
in_trait_dir = "../DATA/GEO/Telomere_Length"
in_cohort_dir = "../DATA/GEO/Telomere_Length/GSE80435"

# Output paths
out_data_file = "./output/preprocess/3/Telomere_Length/GSE80435.csv"
out_gene_data_file = "./output/preprocess/3/Telomere_Length/gene_data/GSE80435.csv"
out_clinical_data_file = "./output/preprocess/3/Telomere_Length/clinical_data/GSE80435.csv"
json_path = "./output/preprocess/3/Telomere_Length/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())

print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# Yes, based on Series_overall_design mentioning "Expression arrays" and use of HumanHT-12/HumanWG-6 Expression BeadChip
is_gene_available = True

# Need to see more sample characteristics rows to properly assess trait data availability
print("Please show complete sample characteristics dictionary")

# Placeholder code - need to see full characteristics before finalizing
trait_row = None
age_row = None 
gender_row = None

def convert_trait(x):
    if x is None:
        return None
    value = x.split(': ')[-1].strip()
    return float(value)

def convert_age(x):
    if x is None:
        return None
    value = x.split(': ')[-1].strip()
    try:
        return float(value)
    except:
        return None

def convert_gender(x):
    if x is None:
        return None
    value = x.split(': ')[-1].strip().lower()
    if 'female' in value:
        return 0
    elif 'male' in value:
        return 1
    return None

# Need full sample characteristics before determining trait availability
is_trait_available = False

validate_and_save_cohort_info(is_final=False,
                            cohort=cohort, 
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())

print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# ILMN_ prefixes indicate Illumina probe IDs, which need to be mapped to gene symbols
# These are not standard human gene symbols and require mapping
requires_gene_mapping = True
# Extract gene annotation from SOFT file 
gene_annotation = get_gene_annotation(soft_file_path)

# Preview annotation structure
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# 1. Observe columns - ID in gene annotation matches gene expression indices, Symbol contains gene names
prob_col = 'ID'
gene_col = 'Symbol'

# 2. Get mapping between gene identifiers and gene symbols
gene_mapping = get_gene_mapping(gene_annotation, prob_col, gene_col)

# 3. Convert probe data to gene expression using the mapping
gene_data = apply_gene_mapping(genetic_data, gene_mapping)

# Print preview to verify the mapping results
print("Gene expression data after mapping:")
print(gene_data.head())
print("\nShape:", gene_data.shape)
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape)

# Save metadata with gene_data as df since clinical data not available
note = "Dataset contains gene expression data normalized to gene level using NCBI database, but lacks clinical trait data"
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True, 
    is_trait_available=False,
    is_biased=False,  # Not biased since we're not analyzing trait
    df=gene_data,    # Provide gene expression data as the DataFrame
    note=note
)