File size: 4,515 Bytes
6f366b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Testicular_Cancer"
cohort = "GSE62523"
# Input paths
in_trait_dir = "../DATA/GEO/Testicular_Cancer"
in_cohort_dir = "../DATA/GEO/Testicular_Cancer/GSE62523"
# Output paths
out_data_file = "./output/preprocess/3/Testicular_Cancer/GSE62523.csv"
out_gene_data_file = "./output/preprocess/3/Testicular_Cancer/gene_data/GSE62523.csv"
out_clinical_data_file = "./output/preprocess/3/Testicular_Cancer/clinical_data/GSE62523.csv"
json_path = "./output/preprocess/3/Testicular_Cancer/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# Gene expression data availability
is_gene_available = True # This is a cDNA microarray study according to background info
# Clinical data availability assessment
trait_row = None # Cell line study, no real patient data
age_row = None # No age information available
gender_row = None # No gender information available
# Data conversion functions
def convert_trait(x):
return None
def convert_age(x):
return None
def convert_gender(x):
return None
# Save metadata about dataset usability
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None))
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The identifiers appear to be custom probe IDs (e.g. '1.1.1.1', '1.1.1.10') rather than standard
# human gene symbols like BRCA1, TP53 etc. These will need to be mapped to gene symbols.
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview annotation structure
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# Get gene mapping from annotation data
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene symbol')
# Apply mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Display results
print("\nGene data preview:")
print(preview_df(gene_data))
print("\nGene data shape:", gene_data.shape)
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape)
# Since no clinical data is available (trait_row was None in Step 2),
# we create a minimal DataFrame with no clinical features
minimal_df = pd.DataFrame(index=gene_data.columns)
for column in gene_data.index:
minimal_df[column] = gene_data.loc[column]
# Evaluate the gene data quality without trait analysis
trait_biased = True # No trait analysis possible
minimal_df = minimal_df.iloc[:, :1000] # Take subset of genes to reduce size
note = "This is a cell line study without patient trait data. While gene expression data was successfully preprocessed from probe-level to gene-level using NCBI Gene database, the dataset cannot be used for trait association analysis."
# Final validation reflecting lack of clinical data
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=trait_biased,
df=minimal_df,
note=note
) |