File size: 6,237 Bytes
6f366b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Thymoma"
cohort = "GSE29695"

# Input paths
in_trait_dir = "../DATA/GEO/Thymoma"
in_cohort_dir = "../DATA/GEO/Thymoma/GSE29695"

# Output paths
out_data_file = "./output/preprocess/3/Thymoma/GSE29695.csv"
out_gene_data_file = "./output/preprocess/3/Thymoma/gene_data/GSE29695.csv"
out_clinical_data_file = "./output/preprocess/3/Thymoma/clinical_data/GSE29695.csv"
json_path = "./output/preprocess/3/Thymoma/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())

print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# From the background information, this is a gene expression dataset using Illumina BeadStudio platform
is_gene_available = True

# 2.1 Data Availability
# Trait can be determined from type/category field (row 1 or 2)
trait_row = 1  # Using the type field which has more granular classification

# Age and gender not available
age_row = None 
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert thymoma subtype to binary (0=less aggressive, 1=more aggressive)"""
    if not value or ':' not in value:
        return None
    
    type_val = value.split(':')[1].strip()
    
    # B3 is most aggressive subtype
    if 'B3' in type_val:
        return 1
    # B2, B1/B2 are intermediate aggression
    elif 'B2' in type_val or 'B1/B2' in type_val:
        return 1  
    # A, AB, B1 are less aggressive
    elif type_val in ['A', 'AB', 'B1', 'Mixed AB', 'A/B']:
        return 0
    # Cell lines should be excluded
    elif type_val == 'CL':
        return None
    return None

def convert_age(value: str) -> float:
    return None  # Age not available

def convert_gender(value: str) -> int:
    return None  # Gender not available

# 3. Save initial metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Extract clinical features since trait_row is not None
clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
                                         trait=trait,
                                         trait_row=trait_row,
                                         convert_trait=convert_trait,
                                         age_row=age_row,
                                         convert_age=convert_age,
                                         gender_row=gender_row,
                                         convert_gender=convert_gender)

print("\nPreview of processed clinical data:")
print(preview_df(clinical_df))

# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs 
print("First 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
# The gene identifiers have the prefix "ILMN_" which indicates they are Illumina probe IDs
# These are not standard human gene symbols and will need to be mapped
requires_gene_mapping = True
# Extract gene annotation from SOFT file 
gene_annotation = get_gene_annotation(soft_file_path)

# Preview annotation structure
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# 1. Identify relevant columns for mapping
# 'ID' column in annotation matches the ILMN_* probe IDs in expression data
# 'Symbol' column contains the human gene symbols
probe_col = 'ID'
gene_col = 'Symbol'

# 2. Get mapping dataframe
mapping_df = get_gene_mapping(gene_annotation, probe_col, gene_col)

# 3. Apply mapping to convert probe data to gene expression data 
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Preview first few rows of converted data
print("\nPreview of gene expression data after mapping:")
print(preview_df(gene_data))
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape) 

# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)

# 2. Link clinical and genetic data using normalized gene-level data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
print("\nLinked data shape:", linked_data.shape)

# 3. Handle missing values systematically  
if trait in linked_data.columns:
    linked_data = handle_missing_values(linked_data, trait)

    # 4. Check for bias in trait and demographic features
    trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5. Final validation and information saving
    note = "Data was successfully preprocessed from probe-level to gene-level expression using gene symbol normalization with NCBI Gene database."
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort, 
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=trait_biased,
        df=linked_data,
        note=note
    )

    # 6. Save linked data only if usable and not biased
    if is_usable and not trait_biased:
        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
        linked_data.to_csv(out_data_file)