File size: 5,330 Bytes
a35b997 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Thyroid_Cancer"
cohort = "GSE151181"
# Input paths
in_trait_dir = "../DATA/GEO/Thyroid_Cancer"
in_cohort_dir = "../DATA/GEO/Thyroid_Cancer/GSE151181"
# Output paths
out_data_file = "./output/preprocess/3/Thyroid_Cancer/GSE151181.csv"
out_gene_data_file = "./output/preprocess/3/Thyroid_Cancer/gene_data/GSE151181.csv"
out_clinical_data_file = "./output/preprocess/3/Thyroid_Cancer/clinical_data/GSE151181.csv"
json_path = "./output/preprocess/3/Thyroid_Cancer/cohort_info.json"
# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
print(f"\n{feature}:")
print(values)
# 1. Gene Expression Data Availability
# Yes, this dataset contains gene expression data as indicated by the dataset title
is_gene_available = True
# 2.1 Data Availability
# tissue type (row 1) indicates tumor vs normal tissue
trait_row = 1
# Age and gender not available in sample characteristics
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert tissue type to binary (0=normal, 1=tumor)"""
if not isinstance(value, str):
return None
value = value.split(": ")[-1].lower()
if "non-neoplastic" in value:
return 0
elif any(x in value for x in ["tumor", "metastasis"]):
return 1
return None
def convert_age(value: str) -> float:
"""Convert age to float"""
return None
def convert_gender(value: str) -> int:
"""Convert gender to binary"""
return None
# 3. Save metadata about dataset availability
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None))
# 4. Extract clinical features since trait_row is not None
clinical_features_df = geo_select_clinical_features(clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview the extracted features
print(preview_df(clinical_features_df))
# Save clinical data
clinical_features_df.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)
# Print first few rows with column names to examine data structure
print("Data preview:")
print("\nColumn names:")
print(list(genetic_data.columns)[:5])
print("\nFirst 5 rows:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
# Verify this is gene expression data and check identifiers
is_gene_available = True
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Save gene expression data
genetic_data.to_csv(out_gene_data_file)
# The IDs in the row index appear to be numeric identifiers (e.g. 23064070)
# rather than standard human gene symbols (e.g. BRCA1, TP53)
# These numeric IDs likely need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data with modified prefix filtering
gene_metadata = get_gene_annotation(soft_file_path, prefixes=['!Platform_table_begin'])
# Clean up column names by removing leading/trailing whitespace
gene_metadata = gene_metadata.rename(columns=lambda x: x.strip())
# Preview column names and first few values
print("\nGene annotation columns preview:")
print(gene_metadata.columns.tolist())
print("\nFirst few rows:")
print(gene_metadata.head())
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path, prefixes=['^', '!', '#'])
# Clean up any whitespace in column names
gene_metadata.columns = gene_metadata.columns.str.strip()
# Preview column names and first few values
preview = preview_df(gene_metadata, n=5)
print("\nGene annotation preview:")
for col, values in preview.items():
print(f"\n{col}:")
print(values)
# Update status since we determined this is a miRNA dataset without gene mapping
is_gene_available = False
# Save updated metadata indicating gene expression data is not available
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
) |