File size: 5,330 Bytes
a35b997
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Thyroid_Cancer"
cohort = "GSE151181"

# Input paths
in_trait_dir = "../DATA/GEO/Thyroid_Cancer"
in_cohort_dir = "../DATA/GEO/Thyroid_Cancer/GSE151181"

# Output paths
out_data_file = "./output/preprocess/3/Thyroid_Cancer/GSE151181.csv"
out_gene_data_file = "./output/preprocess/3/Thyroid_Cancer/gene_data/GSE151181.csv"
out_clinical_data_file = "./output/preprocess/3/Thyroid_Cancer/clinical_data/GSE151181.csv"
json_path = "./output/preprocess/3/Thyroid_Cancer/cohort_info.json"

# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
    print(f"\n{feature}:")
    print(values)
# 1. Gene Expression Data Availability
# Yes, this dataset contains gene expression data as indicated by the dataset title
is_gene_available = True

# 2.1 Data Availability
# tissue type (row 1) indicates tumor vs normal tissue
trait_row = 1
# Age and gender not available in sample characteristics
age_row = None 
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert tissue type to binary (0=normal, 1=tumor)"""
    if not isinstance(value, str):
        return None
    value = value.split(": ")[-1].lower()
    if "non-neoplastic" in value:
        return 0
    elif any(x in value for x in ["tumor", "metastasis"]):
        return 1
    return None

def convert_age(value: str) -> float:
    """Convert age to float"""
    return None

def convert_gender(value: str) -> int:
    """Convert gender to binary"""
    return None

# 3. Save metadata about dataset availability
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=(trait_row is not None))

# 4. Extract clinical features since trait_row is not None
clinical_features_df = geo_select_clinical_features(clinical_df=clinical_data,
                                                  trait=trait,
                                                  trait_row=trait_row,
                                                  convert_trait=convert_trait,
                                                  age_row=age_row,
                                                  convert_age=convert_age, 
                                                  gender_row=gender_row,
                                                  convert_gender=convert_gender)

# Preview the extracted features
print(preview_df(clinical_features_df))

# Save clinical data
clinical_features_df.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)

# Print first few rows with column names to examine data structure
print("Data preview:")
print("\nColumn names:")
print(list(genetic_data.columns)[:5])
print("\nFirst 5 rows:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)

# Verify this is gene expression data and check identifiers
is_gene_available = True

# Save updated metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# Save gene expression data 
genetic_data.to_csv(out_gene_data_file)
# The IDs in the row index appear to be numeric identifiers (e.g. 23064070)
# rather than standard human gene symbols (e.g. BRCA1, TP53)
# These numeric IDs likely need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data with modified prefix filtering
gene_metadata = get_gene_annotation(soft_file_path, prefixes=['!Platform_table_begin'])

# Clean up column names by removing leading/trailing whitespace
gene_metadata = gene_metadata.rename(columns=lambda x: x.strip())

# Preview column names and first few values
print("\nGene annotation columns preview:")
print(gene_metadata.columns.tolist())

print("\nFirst few rows:")
print(gene_metadata.head())
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path, prefixes=['^', '!', '#'])

# Clean up any whitespace in column names
gene_metadata.columns = gene_metadata.columns.str.strip()

# Preview column names and first few values
preview = preview_df(gene_metadata, n=5)
print("\nGene annotation preview:")
for col, values in preview.items():
    print(f"\n{col}:")
    print(values)
# Update status since we determined this is a miRNA dataset without gene mapping
is_gene_available = False 

# Save updated metadata indicating gene expression data is not available
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available, 
    is_trait_available=(trait_row is not None)
)