File size: 6,199 Bytes
a35b997
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Thyroid_Cancer"
cohort = "GSE76039"

# Input paths
in_trait_dir = "../DATA/GEO/Thyroid_Cancer"
in_cohort_dir = "../DATA/GEO/Thyroid_Cancer/GSE76039"

# Output paths
out_data_file = "./output/preprocess/3/Thyroid_Cancer/GSE76039.csv"
out_gene_data_file = "./output/preprocess/3/Thyroid_Cancer/gene_data/GSE76039.csv"
out_clinical_data_file = "./output/preprocess/3/Thyroid_Cancer/clinical_data/GSE76039.csv"
json_path = "./output/preprocess/3/Thyroid_Cancer/cohort_info.json"

# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
    print(f"\n{feature}:")
    print(values)
# 1. Gene Expression Data Availability
# Series used Affymetrix array for expression profiling, so gene data is available
is_gene_available = True

# 2.1 Data Availability
# For trait: Can be inferred from tumor type field
trait_row = 2
# Age not available 
age_row = None
# Gender available in row 0
gender_row = 0

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    # Binary: 0 for non-ATC, 1 for ATC
    if not isinstance(value, str):
        return None
    try:
        value = value.split(": ")[1].lower()
        if 'anaplastic' in value:
            return 1
        elif value:  # Any other tumor type is non-ATC
            return 0
        return None
    except:
        return None

def convert_gender(value):
    if not isinstance(value, str):
        return None
    try:
        value = value.split(": ")[1].lower()
        if value == 'female':
            return 0
        elif value == 'male':
            return 1
        return None
    except:
        return None

convert_age = None  # Not needed since age data unavailable

# 3. Save initial filtering metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                             cohort=cohort,
                             info_path=json_path,
                             is_gene_available=is_gene_available,
                             is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_df = geo_select_clinical_features(clinical_data,
                                             trait=trait,
                                             trait_row=trait_row,
                                             convert_trait=convert_trait,
                                             age_row=age_row,
                                             convert_age=convert_age, 
                                             gender_row=gender_row,
                                             convert_gender=convert_gender)
    
    # Preview the extracted features
    preview = preview_df(clinical_df)
    print("Clinical feature preview:", preview)
    
    # Save clinical data
    clinical_df.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)

# Print first few rows with column names to examine data structure
print("Data preview:")
print("\nColumn names:")
print(list(genetic_data.columns)[:5])
print("\nFirst 5 rows:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)

# Verify this is gene expression data and check identifiers
is_gene_available = True

# Save updated metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# Save gene expression data 
genetic_data.to_csv(out_gene_data_file)
# The gene identifiers appear to be Affymetrix probe IDs (e.g. 1007_s_at, 1053_at)
# which need to be mapped to official gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path) 

# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
# Get mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')

# Apply the mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Preview transformed data
print("\nGene expression data preview:")
print(f"Shape: {gene_data.shape}")
print("\nFirst 5 genes:")
print(gene_data.head())

# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data  
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available, 
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Dataset contains gene expression data comparing follicular thyroid cancers with follicular thyroid adenomas."
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file) 
else:
    print("Dataset marked as unusable due to biased trait distribution.")