File size: 10,042 Bytes
4144951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Underweight"
cohort = "GSE130563"

# Input paths
in_trait_dir = "../DATA/GEO/Underweight"
in_cohort_dir = "../DATA/GEO/Underweight/GSE130563"

# Output paths
out_data_file = "./output/preprocess/3/Underweight/GSE130563.csv"
out_gene_data_file = "./output/preprocess/3/Underweight/gene_data/GSE130563.csv"
out_clinical_data_file = "./output/preprocess/3/Underweight/clinical_data/GSE130563.csv"
json_path = "./output/preprocess/3/Underweight/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())

print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
is_gene_available = True  # Based on background info, this is gene expression data from muscle biopsies

# 2.1 Data Availability
trait_row = 3  # bw loss data available in row 3
age_row = 4    # age data available in row 4
gender_row = 1 # gender data available in row 1 as "Sex"

# 2.2 Data Type Conversion Functions
def convert_trait(val):
    # Extract value after colon
    if ':' in val:
        val = val.split(':')[1].strip()
    # Convert to binary based on >= 5% weight loss criteria mentioned in background
    try:
        if val == '0':
            return 0
        elif val == 'n.d. (not determined)':
            return None
        else:
            weight_loss = float(val)
            return 1 if weight_loss >= 5 else 0
    except:
        return None

def convert_age(val):
    # Extract age value after colon
    if ':' in val:
        val = val.split(':')[1].strip()
    try:
        return float(val)
    except:
        return None

def convert_gender(val):
    # Extract gender value after colon and convert F->0, M->1
    if ':' in val:
        val = val.split(':')[1].strip()
    if val == 'F':
        return 0
    elif val == 'M':
        return 1
    return None

# 3. Save Initial Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
clinical_features = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview extracted features
print(preview_df(clinical_features))

# Save clinical data
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs 
print("First 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
# These identifiers appear to be microarray probe IDs (suffix '_at' is characteristic of Affymetrix arrays)
# rather than standard human gene symbols. They will need to be mapped to gene symbols.
requires_gene_mapping = True
# Extract gene annotation from SOFT file with broader prefix filtering
gene_annotation = get_gene_annotation(soft_file_path, prefixes=['!', '#'])

# Display all column names
print("All annotation columns:")
print(list(gene_annotation.columns))

# Preview first few rows of annotation data 
print("\nGene annotation preview (first few rows):")
print(gene_annotation.head())
# Extract platform annotation data by excluding series and sample sections
gene_annotation = get_gene_annotation(soft_file_path, prefixes=['!Series', '!Sample', '^'])

# Print details about annotation data for debugging
print("Gene annotation preview:")
print(gene_annotation.head())
print("\nAnnotation shape:", gene_annotation.shape)
print("\nAnnotation columns:", list(gene_annotation.columns))

# Based on column names, get mapping between probes and genes
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID_REF', gene_col='Gene Symbol') 

# Print mapping data preview
print("\nMapping data preview:")
print(mapping_data.head())
print("\nMapping data shape:", mapping_data.shape)

# Apply mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview results
print("\nFirst 20 gene symbols:")
print(list(gene_data.index[:20]))

print("\nShape of gene expression data:")
print(gene_data.shape)

# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Look for platform annotation file
platform_files = [f for f in os.listdir(in_cohort_dir) if 'annot' in f.lower()]
platform_file_path = os.path.join(in_cohort_dir, platform_files[0])

# Read platform annotation file
platform_annotation = pd.read_csv(platform_file_path, sep='\t', skiprows=0, low_memory=False)

# Display column names to find relevant ones
print("Platform annotation columns:")
print(list(platform_annotation.columns))

# Preview platform annotation data
print("\nPlatform annotation preview:")
print(platform_annotation[['probeset_id', 'gene_assignment']].head())

# Create mapping dataframe between probe IDs and gene symbols
mapping_data = platform_annotation[['probeset_id', 'gene_assignment']].copy()
mapping_data = mapping_data.rename(columns={'probeset_id': 'ID', 'gene_assignment': 'Gene'})

# Print mapping data shape and preview
print("\nMapping data shape:", mapping_data.shape)
print("\nMapping data preview:")
print(mapping_data.head())
# Try different prefix combinations to find the platform annotation section
gene_annotation = get_gene_annotation(soft_file_path, prefixes=['!Platform'])

# Print annotation details for debugging
print("Gene annotation preview:")
print(gene_annotation.head())
print("\nAnnotation columns:", list(gene_annotation.columns))

# Since we can't directly access platform annotation, let's try to obtain probe ID and gene symbol mapping
# by examining the expression matrix header
probe_ids = genetic_data.index.tolist()
mapping_data = pd.DataFrame({'ID': probe_ids})
mapping_data['Gene'] = mapping_data['ID'].str.extract(r'([A-Za-z0-9]+)_at')

# Print mapping data preview
print("\nMapping data preview:")
print(mapping_data.head())
print("\nMapping data shape:", mapping_data.shape)

# Apply mapping to convert probe-level to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

print("\nGene data preview:")
print(gene_data.head())
print("\nGene data shape:", gene_data.shape)

# Save gene data
gene_data.to_csv(out_gene_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs 
print("First 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
# Get platform annotation from SOFT file
prefixes_to_exclude = ['!Series', '!Sample', '^SERIES', '^SAMPLE']
gene_annotation = get_gene_annotation(soft_file_path, prefixes=prefixes_to_exclude)

# Extract probe-gene mapping section
probe_gene_lines = []
in_mapping = False
with gzip.open(soft_file_path, 'rt') as f:
    for line in f:
        if '!platform_table_begin' in line:
            in_mapping = True
            continue
        elif '!platform_table_end' in line:
            break
        elif in_mapping:
            probe_gene_lines.append(line)

# Create dataframe from probe-gene mapping
if probe_gene_lines:
    mapping_df = pd.read_csv(io.StringIO(''.join(probe_gene_lines)), sep='\t')
    print("Available columns in platform table:")
    print(mapping_df.columns)
    print("\nFirst few rows of platform table:")
    print(mapping_df.head())
    
    # Extract probe ID and gene columns using available column names
    id_column = [col for col in mapping_df.columns if 'id' in col.lower()][0]
    gene_column = [col for col in mapping_df.columns if 'gene' in col.lower()][0]
    
    mapping_data = pd.DataFrame({
        'ID': mapping_df[id_column],
        'Gene': mapping_df[gene_column]
    })
else:
    # If no mapping found, use the probe IDs as gene names
    probe_ids = genetic_data.index.tolist()
    mapping_data = pd.DataFrame({'ID': probe_ids, 'Gene': [x.split('_')[0] for x in probe_ids]})

# Convert probe-level to gene-level measurements
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)  
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape)

# 2. Link clinical and genetic data 
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in features 
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save dataset metadata
note = "Dataset contains gene expression data from rectus abdominis muscle biopsies, along with weight loss and clinical information from pancreatic cancer patients."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)