File size: 5,547 Bytes
4144951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Underweight"
cohort = "GSE131835"

# Input paths
in_trait_dir = "../DATA/GEO/Underweight"
in_cohort_dir = "../DATA/GEO/Underweight/GSE131835"

# Output paths
out_data_file = "./output/preprocess/3/Underweight/GSE131835.csv"
out_gene_data_file = "./output/preprocess/3/Underweight/gene_data/GSE131835.csv"
out_clinical_data_file = "./output/preprocess/3/Underweight/clinical_data/GSE131835.csv"
json_path = "./output/preprocess/3/Underweight/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())

print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# Based on the title and description, this dataset contains gene expression data from microarray
is_gene_available = True

# 2. Variable Availability and Data Type Conversion

# 2.1 Data Availability
# From sample characteristics:
# Row 1 shows "group" with CWS/CWL/CONTROL - can infer underweight status
trait_row = 1  
# Row 3 shows age
age_row = 3
# Row 2 shows gender
gender_row = 2

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    """Convert group info to binary underweight status"""
    if not x or ':' not in x:
        return None
    value = x.split(':')[1].strip().upper()
    # CWL (Cancer Weight Loss) indicates underweight
    if 'CWL' in value:
        return 1
    # CWS (Cancer Weight Stable) and CONTROL are not underweight
    elif 'CWS' in value or 'CONTROL' in value:
        return 0
    return None

def convert_age(x):
    """Convert age to continuous value"""
    if not x or ':' not in x:
        return None
    try:
        return float(x.split(':')[1].strip())
    except:
        return None

def convert_gender(x):
    """Convert gender to binary (0=female, 1=male)"""
    if not x or ':' not in x:
        return None
    value = x.split(':')[1].strip().lower()
    if 'female' in value:
        return 0
    elif 'male' in value:
        return 1
    return None

# 3. Save metadata
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=trait_row is not None)

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview results
    preview_df(clinical_features)
    
    # Save to file
    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs 
print("First 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
# The identifiers are in ENSEMBL format (ENSG...) with "_at" suffix
# These need to be mapped to standard human gene symbols
requires_gene_mapping = True
# Extract gene annotation from SOFT file 
gene_annotation = get_gene_annotation(soft_file_path)

# Preview annotation structure
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# Extract gene mapping from annotation data
# ID column in annotation matches the probe IDs in expression data
# ORF column contains the gene symbols
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='ORF')

# Apply mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, gene_mapping)
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape)

# 2. Link clinical and genetic data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in features
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save dataset metadata
note = "Dataset contains gene expression data and clinical information from Type 1 Diabetes patients."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)