File size: 5,250 Bytes
4144951 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Underweight"
cohort = "GSE50982"
# Input paths
in_trait_dir = "../DATA/GEO/Underweight"
in_cohort_dir = "../DATA/GEO/Underweight/GSE50982"
# Output paths
out_data_file = "./output/preprocess/3/Underweight/GSE50982.csv"
out_gene_data_file = "./output/preprocess/3/Underweight/gene_data/GSE50982.csv"
out_clinical_data_file = "./output/preprocess/3/Underweight/clinical_data/GSE50982.csv"
json_path = "./output/preprocess/3/Underweight/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene expression data availability - Yes (gene data from cell lines)
is_gene_available = True
# 2.1 Data availability
# Trait (underweight): Determined by knockdown days (Row 1) as knockdown causes cachexia (weight loss)
trait_row = 1
# Age and gender not available (cell line study)
age_row = None
gender_row = None
# 2.2 Data type conversion functions
def convert_trait(value: str) -> Optional[float]:
"""Convert knockdown days to binary underweight indicator"""
try:
if ':' in value:
days = float(value.split(':')[1].strip())
# Based on cachexia effect mentioned in background, classify >=8 days as underweight
return 1.0 if days >= 8 else 0.0
except:
return None
return None
def convert_age(value: str) -> Optional[float]:
return None # Not available
def convert_gender(value: str) -> Optional[float]:
return None # Not available
# 3. Save metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Extract clinical features
clinical_selected = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
print("Preview of selected clinical features:")
print(preview_df(clinical_selected))
# Save clinical data
clinical_selected.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
# The gene IDs are Illumina probe IDs (starting with ILMN_), not standard human gene symbols
requires_gene_mapping = True
# Extract gene annotation from SOFT file by filtering lines with specified prefixes
gene_annotation = get_gene_annotation(soft_file_path)
# Load gene mapping from extracted annotation, looking for relevant ID and symbol columns
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
# Preview the mapping data
print("Gene mapping preview:")
print(preview_df(gene_mapping))
# 1 & 2: Get gene mapping from extracted annotation
# Based on previews, ID column contains ILMN_ identifiers matching expression data, and Symbol contains gene names
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
# 3: Apply mapping to convert probe data to gene expression
gene_data = apply_gene_mapping(genetic_data, gene_mapping)
# Preview first few genes and their expression
print("Gene expression data preview:")
print(preview_df(gene_data))
# Save gene data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape)
# 2. Link clinical and genetic data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in features
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save dataset metadata
note = "Dataset contains gene expression data and clinical information from Type 1 Diabetes patients."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |