File size: 5,250 Bytes
4144951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Underweight"
cohort = "GSE50982"

# Input paths
in_trait_dir = "../DATA/GEO/Underweight"
in_cohort_dir = "../DATA/GEO/Underweight/GSE50982"

# Output paths
out_data_file = "./output/preprocess/3/Underweight/GSE50982.csv"
out_gene_data_file = "./output/preprocess/3/Underweight/gene_data/GSE50982.csv"
out_clinical_data_file = "./output/preprocess/3/Underweight/clinical_data/GSE50982.csv"
json_path = "./output/preprocess/3/Underweight/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())

print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene expression data availability - Yes (gene data from cell lines)
is_gene_available = True

# 2.1 Data availability
# Trait (underweight): Determined by knockdown days (Row 1) as knockdown causes cachexia (weight loss)
trait_row = 1  
# Age and gender not available (cell line study)
age_row = None
gender_row = None 

# 2.2 Data type conversion functions
def convert_trait(value: str) -> Optional[float]:
    """Convert knockdown days to binary underweight indicator"""
    try:
        if ':' in value:
            days = float(value.split(':')[1].strip())
            # Based on cachexia effect mentioned in background, classify >=8 days as underweight
            return 1.0 if days >= 8 else 0.0
    except:
        return None
    return None

def convert_age(value: str) -> Optional[float]:
    return None  # Not available

def convert_gender(value: str) -> Optional[float]:
    return None  # Not available

# 3. Save metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Extract clinical features
clinical_selected = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

print("Preview of selected clinical features:")
print(preview_df(clinical_selected))

# Save clinical data
clinical_selected.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs 
print("First 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
# The gene IDs are Illumina probe IDs (starting with ILMN_), not standard human gene symbols
requires_gene_mapping = True
# Extract gene annotation from SOFT file by filtering lines with specified prefixes
gene_annotation = get_gene_annotation(soft_file_path)

# Load gene mapping from extracted annotation, looking for relevant ID and symbol columns 
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')

# Preview the mapping data
print("Gene mapping preview:")
print(preview_df(gene_mapping))
# 1 & 2: Get gene mapping from extracted annotation
# Based on previews, ID column contains ILMN_ identifiers matching expression data, and Symbol contains gene names
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')

# 3: Apply mapping to convert probe data to gene expression
gene_data = apply_gene_mapping(genetic_data, gene_mapping)

# Preview first few genes and their expression
print("Gene expression data preview:")
print(preview_df(gene_data))

# Save gene data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape)

# 2. Link clinical and genetic data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in features
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save dataset metadata
note = "Dataset contains gene expression data and clinical information from Type 1 Diabetes patients."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)