File size: 5,810 Bytes
4144951 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Underweight"
cohort = "GSE57802"
# Input paths
in_trait_dir = "../DATA/GEO/Underweight"
in_cohort_dir = "../DATA/GEO/Underweight/GSE57802"
# Output paths
out_data_file = "./output/preprocess/3/Underweight/GSE57802.csv"
out_gene_data_file = "./output/preprocess/3/Underweight/gene_data/GSE57802.csv"
out_clinical_data_file = "./output/preprocess/3/Underweight/clinical_data/GSE57802.csv"
json_path = "./output/preprocess/3/Underweight/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene expression data availability - Analyzing background information
# From title and summary, this is transcriptome profiling data, so gene expression data should be available
is_gene_available = True
# 2.1. Data availability
# From sample characteristics, we can see:
# - Copy number and genotype info in rows 3 & 4 - can use for trait (underweight)
# - Age info in row 2
# - Gender info in row 1
trait_row = 3 # Copy number row for determining underweight status
age_row = 2
gender_row = 1
# 2.2. Data type conversion functions
def convert_trait(x: str) -> int:
"""Convert copy number to binary underweight indicator
From background info: deletion (copy number 1) is associated with underweight"""
if not x or 'copy number 16p11.2' not in x:
return None
copy_num = x.split(': ')[1]
if copy_num == '1': # deletion = underweight
return 1
return 0
def convert_age(x: str) -> float:
"""Convert age string to float value"""
if not x or 'age' not in x:
return None
age_str = x.split(': ')[1]
if age_str == 'NA':
return None
try:
return float(age_str)
except:
return None
def convert_gender(x: str) -> int:
"""Convert gender string to binary (0=female, 1=male)"""
if not x or 'gender' not in x:
return None
gender = x.split(': ')[1]
if gender == 'F':
return 0
elif gender == 'M':
return 1
return None
# 3. Save initial metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Extract clinical features since trait data is available
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview = preview_df(clinical_features)
# Save clinical data
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
# These IDs are Affymetrix probe IDs with _PM_ pattern, not gene symbols
# Therefore gene ID mapping will be required
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview annotation structure
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# 1. Identify relevant columns for mapping
# 'ID' column in gene_annotation matches the probe IDs in genetic_data (e.g., '1007_PM_s_at')
# 'Gene Symbol' column contains the standardized gene symbols (e.g., 'DDR1')
# 2. Extract mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
# 3. Apply mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Preview the mapped data
print("\nFirst few mapped genes:")
print(list(gene_data.index[:10]))
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape)
# 2. Link clinical and genetic data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in features
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save dataset metadata
note = "Dataset contains gene expression data and clinical information from Type 1 Diabetes patients."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |