File size: 9,825 Bytes
4144951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Underweight"
cohort = "GSE84954"

# Input paths
in_trait_dir = "../DATA/GEO/Underweight"
in_cohort_dir = "../DATA/GEO/Underweight/GSE84954"

# Output paths
out_data_file = "./output/preprocess/3/Underweight/GSE84954.csv"
out_gene_data_file = "./output/preprocess/3/Underweight/gene_data/GSE84954.csv"
out_clinical_data_file = "./output/preprocess/3/Underweight/clinical_data/GSE84954.csv"
json_path = "./output/preprocess/3/Underweight/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())

print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# This is microarray data studying molecular pathways in tissues, so it should contain gene expression data
is_gene_available = True

# 2. Variable Availability and Data Type Conversion

# Trait - use chronic liver disease as trait indicator (disease status)
trait_row = 1  # Disease information in row 1

def convert_trait(value: str) -> Optional[int]:
    """Convert disease status to binary (0 for control, 1 for liver disease)"""
    if not value or ':' not in value:
        return None
    value = value.split(':', 1)[1].strip()
    if 'Crigler-Najjar' in value:  # Control group
        return 0
    elif 'chronic liver disease' in value or 'Alagille' in value:  # Disease group
        return 1
    return None

# Age - not available in sample characteristics
age_row = None  
convert_age = None

# Gender - not available in sample characteristics  
gender_row = None
convert_gender = None

# 3. Save metadata
# Trait data is available since trait_row is not None
is_trait_available = trait_row is not None

validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Extract clinical features since trait data is available
selected_clinical_df = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview the clinical data
print("Clinical Data Preview:")
print(preview_df(selected_clinical_df))

# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs 
print("First 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
# Analyzing gene identifiers
# The identifiers appear to be numeric probe IDs (16650001, 16650003 etc)
# These are not standard human gene symbols which are typically alphanumeric like 'BRCA1'
# They seem to be probe IDs from a microarray platform that need mapping to gene symbols
requires_gene_mapping = True
# Extract gene annotation from SOFT file 
gene_annotation = get_gene_annotation(soft_file_path)

# Preview annotation structure
print("Gene annotation preview:")
print(preview_df(gene_annotation))

print("\nAll columns in annotation data:")
print(list(gene_annotation.columns))
# 1. Get metadata from SOFT file with correct pattern matching
metadata_pattern = r'!platform_table_begin\n(.*?)\n!platform_table_end'
with gzip.open(soft_file_path, 'rt') as f:
    content = f.read()
    
matches = re.findall(metadata_pattern, content, re.DOTALL)
if matches:
    platform_data = pd.read_csv(io.StringIO(matches[0]), sep='\t')
    
    # Create mapping using platform data
    mapping_data = platform_data[['ID', 'Gene Symbol']].copy()
    mapping_data = mapping_data.dropna()
    mapping_data = mapping_data.rename(columns={'Gene Symbol': 'Gene'})

    # 3. Apply mapping to get gene expression data
    gene_data = apply_gene_mapping(genetic_data, mapping_data)

    # Preview the mapped gene data
    print("\nFirst 10 rows of mapped gene expression data:")
    print(preview_df(gene_data.head(10)))

    # Save gene data
    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
    gene_data.to_csv(out_gene_data_file)
else:
    print("Could not find platform table in SOFT file")
# 1. Get metadata from SOFT file with correct pattern matching
# Need to look for lines with gene symbol information
platform_pattern = r'#ID = (.*?)\n(.*?)!platform_table_begin'
gene_pattern = r'#Gene_Symbol = (.*?)\n'

with gzip.open(soft_file_path, 'rt') as f:
    content = f.read()
    
# Find and extract the platform GPL information section which contains annotation details
platform_matches = re.search(platform_pattern, content, re.DOTALL)
if platform_matches:
    platform_section = platform_matches.group(2)
    gene_matches = re.search(gene_pattern, platform_section)
    if gene_matches:
        # Create mapping dataframe with the proper gene symbol column
        platform_data = pd.read_csv(io.StringIO(platform_matches.group(2)), sep='\t')
        gene_col = gene_matches.group(1).strip()
        
        mapping_data = platform_data[['ID', gene_col]].copy()
        mapping_data = mapping_data.dropna()
        mapping_data = mapping_data.rename(columns={gene_col: 'Gene'}) 

        # Apply mapping to get gene expression data
        gene_data = apply_gene_mapping(genetic_data, mapping_data)

        # Preview the mapped gene expression data
        print("\nFirst 10 rows of mapped gene expression data:")
        print(preview_df(gene_data.head(10)))

        # Save gene data
        os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
        gene_data.to_csv(out_gene_data_file)
    else:
        print("Could not find gene symbol column information in platform metadata")
else:
    print("Could not find platform metadata section in SOFT file")
# Let's examine the SOFT file structure more carefully to find gene symbols
with gzip.open(soft_file_path, 'rt') as f:
    platform_section = False
    gene_mapping_lines = []
    for line in f:
        if line.startswith('!Platform_table_begin'):
            platform_section = True
            continue
        elif line.startswith('!Platform_table_end'):
            platform_section = False
            continue
        if platform_section:
            gene_mapping_lines.append(line)

# Create mapping dataframe
mapping_data = pd.read_csv(io.StringIO(''.join(gene_mapping_lines)), sep='\t')
# Filter rows where gene symbol exists and is not empty
mapping_data = mapping_data[['ID', 'Symbol']].copy()
mapping_data = mapping_data.dropna(subset=['Symbol'])
mapping_data = mapping_data[mapping_data['Symbol'].str.strip() != '']
mapping_data = mapping_data.rename(columns={'Symbol': 'Gene'})

# Apply mapping to get gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Normalize gene symbols using NCBI data
gene_data = normalize_gene_symbols_in_index(gene_data)
print("\nGene data shape (after normalization):", gene_data.shape)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# Link clinical and genetic data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# Check for bias in features
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# Validate and save dataset metadata
note = "Dataset contains gene expression data from liver disease patients and controls, with proper mapping to standardized gene symbols."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_trait_biased,
    df=linked_data,
    note=note
)

# Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)
# Get gene annotation data using the library function
gene_annotation = get_gene_annotation(soft_file_path)

# Create mapping using ID and Symbol columns
mapping_data = gene_annotation[['ID', 'Symbol']].copy()
mapping_data = mapping_data.dropna()
mapping_data = mapping_data.rename(columns={'Symbol': 'Gene'})

# Apply mapping to get gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview the mapped gene expression data
print("\nFirst few rows of mapped gene expression data:")
print(preview_df(gene_data.head()))
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())

print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)