File size: 5,628 Bytes
4144951 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Vitamin_D_Levels"
cohort = "GSE34450"
# Input paths
in_trait_dir = "../DATA/GEO/Vitamin_D_Levels"
in_cohort_dir = "../DATA/GEO/Vitamin_D_Levels/GSE34450"
# Output paths
out_data_file = "./output/preprocess/3/Vitamin_D_Levels/GSE34450.csv"
out_gene_data_file = "./output/preprocess/3/Vitamin_D_Levels/gene_data/GSE34450.csv"
out_clinical_data_file = "./output/preprocess/3/Vitamin_D_Levels/clinical_data/GSE34450.csv"
json_path = "./output/preprocess/3/Vitamin_D_Levels/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Check gene expression data availability
# Based on the title "Genes Associated with MUC5AC Expression" and studying effect on small airway epithelium gene expression,
# this is likely a gene expression dataset
is_gene_available = True
# 2. Analyze variable availability and create conversion functions
# 2.1 & 2.2 Vitamin D level data is in row 3 with "serum 25-oh-d" prefix
trait_row = 3
def convert_trait(x):
if pd.isna(x):
return None
x = str(x).lower()
if "serum 25-oh-d:" not in x:
return None
if "high" in x:
return 2
elif "mid" in x:
return 1
elif "low" in x:
return 0
return None
# Age is not available
age_row = None
def convert_age(x):
return None
# Gender is not available
gender_row = None
def convert_gender(x):
return None
# 3. Save cohort info and validate
# trait_row is not None, so trait data is available
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True)
# 4. Extract clinical features and save since trait data is available
clinical_features = geo_select_clinical_features(clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview output
print("\nPreviewing clinical features:")
print(preview_df(clinical_features))
# Save to CSV
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
# These are Affymetrix probe IDs (e.g. '1007_s_at') from an Affymetrix microarray
# They need to be mapped to human gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview annotation structure
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# From previews: gene expression data uses IDs like '1007_s_at'
# Gene annotation has matching IDs in 'ID' column and gene symbols in 'Gene Symbol' column
# Get mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
# Apply mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Print shape and preview first few rows
print("\nGene expression data shape after mapping:", gene_data.shape)
print("\nFirst few rows of gene expression data:")
print(preview_df(gene_data))
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape)
# 2. Link clinical and genetic data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in features
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save dataset metadata
note = "Dataset contains gene expression data from cancer cell lines, but has severely imbalanced distribution of carcinosarcoma cases."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |