File size: 4,109 Bytes
4144951 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Vitamin_D_Levels"
cohort = "GSE35925"
# Input paths
in_trait_dir = "../DATA/GEO/Vitamin_D_Levels"
in_cohort_dir = "../DATA/GEO/Vitamin_D_Levels/GSE35925"
# Output paths
out_data_file = "./output/preprocess/3/Vitamin_D_Levels/GSE35925.csv"
out_gene_data_file = "./output/preprocess/3/Vitamin_D_Levels/gene_data/GSE35925.csv"
out_clinical_data_file = "./output/preprocess/3/Vitamin_D_Levels/clinical_data/GSE35925.csv"
json_path = "./output/preprocess/3/Vitamin_D_Levels/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# From background info, this is a gene expression study using U133 Plus 2.0 GeneChip (Affymetrix)
is_gene_available = True
# 2. Clinical Features
# 2.1 Data Availability
# All samples are breast cancer patients, so looking at rows 0-3 for clinical data
trait_row = None # No vitamin D level data
age_row = 1 # Age data in row 1
gender_row = None # Gender data unusable since all samples are female (constant feature)
# 2.2 Data Type Conversion Functions
def convert_trait(x):
# Not used since trait data not available
return None
def convert_age(x):
try:
return float(x.split(': ')[1])
except:
return None
def convert_gender(x):
# Not used since gender data marked as unavailable
return None
# 3. Save metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=False # trait_row is None
)
# 4. Skip clinical feature extraction since trait_row is None
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
# The identifiers shown are from Affymetrix Human Genome U133 Plus 2.0 Array probe IDs
# These are probe IDs and need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview annotation structure
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# Get gene mapping from annotation
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
# Apply the mapping to convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview first few rows of gene data
print("\nFirst few rows of gene expression data:")
print(preview_df(gene_data))
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape)
# Since trait data is not available (trait_row was None in Step 2),
# set the trait bias to True since dataset lacks required trait data
note = "Dataset contains gene expression data but lacks vitamin D level measurements needed for trait analysis."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=True, # Dataset is biased/unusable due to missing trait data
df=gene_data, # Provide the gene expression data
note=note
) |