File size: 6,639 Bytes
4144951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Werner_Syndrome"
cohort = "GSE48761"

# Input paths
in_trait_dir = "../DATA/GEO/Werner_Syndrome"
in_cohort_dir = "../DATA/GEO/Werner_Syndrome/GSE48761"

# Output paths
out_data_file = "./output/preprocess/3/Werner_Syndrome/GSE48761.csv"
out_gene_data_file = "./output/preprocess/3/Werner_Syndrome/gene_data/GSE48761.csv"
out_clinical_data_file = "./output/preprocess/3/Werner_Syndrome/clinical_data/GSE48761.csv"
json_path = "./output/preprocess/3/Werner_Syndrome/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())

print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# Based on background info, this dataset contains gene expression data from fibroblasts and iPSCs
is_gene_available = True

# 2.1 Data Availability
# Row 2 contains genotype info (WT vs WRN mutant) which indicates Werner Syndrome status
trait_row = 2
# Row 1 contains age information
age_row = 1  
# Row 0 contains gender information
gender_row = 0

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert genotype to binary trait value (0=control, 1=Werner Syndrome)"""
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip()
    if 'WRN mutant' in value:
        return 1
    elif 'WT' in value:
        return 0
    return None

def convert_age(value: str) -> float:
    """Convert age string to float value in years"""
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip()
    if value == 'embryonic':
        return 0.0  # Assign 0 for embryonic samples
    try:
        return float(value)
    except:
        return None

def convert_gender(value: str) -> int:
    """Convert gender string to binary (0=female, 1=male)"""
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip().lower()
    if 'female' in value:
        return 0
    elif 'male' in value:
        return 1
    return None

# 3. Save Initial Metadata
# Perform initial validation
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Extract Clinical Features
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    preview = preview_df(clinical_features)
    print("Preview of extracted clinical features:")
    print(preview)
    
    # Save to CSV
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs and shape of data
print("Shape of genetic data:", genetic_data.shape)
print("\nFirst 5 rows with sample columns:")
print(genetic_data.head())
print("\nFirst 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))

# Print first few lines of raw matrix file to inspect format
print("\nFirst few lines of raw matrix file:")
with gzip.open(matrix_file_path, 'rt') as f:
    for i, line in enumerate(f):
        if i < 10:  # Print first 10 lines
            print(line.strip())
        elif "!series_matrix_table_begin" in line:
            print("\nFound table marker at line", i)
            # Print next 3 lines after marker
            for _ in range(3):
                print(next(f).strip())
            break
# Based on the gene IDs shown (e.g. 7892501), these appear to be probe IDs from a microarray platform
# rather than standard human gene symbols. They will need to be mapped to gene symbols.
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)

# Preview annotation structure 
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# 1. From checking both dataframes, 'ID' in annotation matches probe IDs in expression data
# and 'gene_assignment' contains gene symbols
prob_col = 'ID'
gene_col = 'gene_assignment'

# 2. Get mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)

# 3. Convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Normalize gene symbols to standard format
gene_data = normalize_gene_symbols_in_index(gene_data)

# Preview results
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of gene expression data:")
print(gene_data.head())
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape)

# 2. Link clinical and genetic data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in features
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save dataset metadata
note = "Dataset contains gene expression data from cancer cell lines, but has severely imbalanced distribution of carcinosarcoma cases."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)