File size: 6,167 Bytes
dd19378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Werner_Syndrome"
cohort = "GSE62877"

# Input paths
in_trait_dir = "../DATA/GEO/Werner_Syndrome"
in_cohort_dir = "../DATA/GEO/Werner_Syndrome/GSE62877"

# Output paths
out_data_file = "./output/preprocess/3/Werner_Syndrome/GSE62877.csv"
out_gene_data_file = "./output/preprocess/3/Werner_Syndrome/gene_data/GSE62877.csv"
out_clinical_data_file = "./output/preprocess/3/Werner_Syndrome/clinical_data/GSE62877.csv"
json_path = "./output/preprocess/3/Werner_Syndrome/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())

print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data
is_gene_available = True  # Based on background info mentioning mRNA expression analysis

# 2.1 Data Row Identification
trait_row = 2  # Using 'group' field to identify WS patients
age_row = 1  # Age information appears in row 1
gender_row = 2  # Gender info appears in both row 2 and 5, using row 2 as it's more complete

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    if pd.isna(x):
        return None
    value = x.split(': ')[-1]
    if value == 'WRN':  # WRN group indicates Werner Syndrome patients
        return 1
    elif value in ['control', 'NS']:  # Control or non-specific controls
        return 0
    return None

def convert_age(x):
    if pd.isna(x):
        return None
    try:
        age = int(x.split(': ')[-1])
        return age
    except:
        return None

def convert_gender(x):
    if pd.isna(x):
        return None
    value = x.split(': ')[-1].upper()
    if value in ['F', 'FEMALE']:
        return 0
    elif value in ['M', 'MALE']:
        return 1
    return None

# 3. Save Initial Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    preview = preview_df(clinical_features)
    
    # Save to CSV
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs and shape of data
print("Shape of genetic data:", genetic_data.shape)
print("\nFirst 5 rows with sample columns:")
print(genetic_data.head())
print("\nFirst 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))

# Print first few lines of raw matrix file to inspect format
print("\nFirst few lines of raw matrix file:")
with gzip.open(matrix_file_path, 'rt') as f:
    for i, line in enumerate(f):
        if i < 10:  # Print first 10 lines
            print(line.strip())
        elif "!series_matrix_table_begin" in line:
            print("\nFound table marker at line", i)
            # Print next 3 lines after marker
            for _ in range(3):
                print(next(f).strip())
            break
# Check first few gene IDs - they appear to be numerical probe IDs
probes = ['2315554', '2315633', '2315674', '2315739', '2315894']

# These are Illumina probe IDs, not gene symbols, so we need mapping
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)

# Preview annotation structure 
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# 'ID' in gene annotation matches probe IDs in expression data
# 'gene_assignment' contains gene symbol information
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')

# Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview result
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene data:")
print(gene_data.head())
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape)

# 2. Link clinical and genetic data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in features
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save dataset metadata
note = "Dataset contains gene expression data from cancer cell lines, but has severely imbalanced distribution of carcinosarcoma cases."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)