File size: 6,167 Bytes
dd19378 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Werner_Syndrome"
cohort = "GSE62877"
# Input paths
in_trait_dir = "../DATA/GEO/Werner_Syndrome"
in_cohort_dir = "../DATA/GEO/Werner_Syndrome/GSE62877"
# Output paths
out_data_file = "./output/preprocess/3/Werner_Syndrome/GSE62877.csv"
out_gene_data_file = "./output/preprocess/3/Werner_Syndrome/gene_data/GSE62877.csv"
out_clinical_data_file = "./output/preprocess/3/Werner_Syndrome/clinical_data/GSE62877.csv"
json_path = "./output/preprocess/3/Werner_Syndrome/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data
is_gene_available = True # Based on background info mentioning mRNA expression analysis
# 2.1 Data Row Identification
trait_row = 2 # Using 'group' field to identify WS patients
age_row = 1 # Age information appears in row 1
gender_row = 2 # Gender info appears in both row 2 and 5, using row 2 as it's more complete
# 2.2 Data Type Conversion Functions
def convert_trait(x):
if pd.isna(x):
return None
value = x.split(': ')[-1]
if value == 'WRN': # WRN group indicates Werner Syndrome patients
return 1
elif value in ['control', 'NS']: # Control or non-specific controls
return 0
return None
def convert_age(x):
if pd.isna(x):
return None
try:
age = int(x.split(': ')[-1])
return age
except:
return None
def convert_gender(x):
if pd.isna(x):
return None
value = x.split(': ')[-1].upper()
if value in ['F', 'FEMALE']:
return 0
elif value in ['M', 'MALE']:
return 1
return None
# 3. Save Initial Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview = preview_df(clinical_features)
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs and shape of data
print("Shape of genetic data:", genetic_data.shape)
print("\nFirst 5 rows with sample columns:")
print(genetic_data.head())
print("\nFirst 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
# Print first few lines of raw matrix file to inspect format
print("\nFirst few lines of raw matrix file:")
with gzip.open(matrix_file_path, 'rt') as f:
for i, line in enumerate(f):
if i < 10: # Print first 10 lines
print(line.strip())
elif "!series_matrix_table_begin" in line:
print("\nFound table marker at line", i)
# Print next 3 lines after marker
for _ in range(3):
print(next(f).strip())
break
# Check first few gene IDs - they appear to be numerical probe IDs
probes = ['2315554', '2315633', '2315674', '2315739', '2315894']
# These are Illumina probe IDs, not gene symbols, so we need mapping
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview annotation structure
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# 'ID' in gene annotation matches probe IDs in expression data
# 'gene_assignment' contains gene symbol information
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
# Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview result
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene data:")
print(gene_data.head())
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape)
# 2. Link clinical and genetic data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in features
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save dataset metadata
note = "Dataset contains gene expression data from cancer cell lines, but has severely imbalanced distribution of carcinosarcoma cases."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |