File size: 6,127 Bytes
dd19378 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "X-Linked_Lymphoproliferative_Syndrome"
cohort = "GSE156309"
# Input paths
in_trait_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome"
in_cohort_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome/GSE156309"
# Output paths
out_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/GSE156309.csv"
out_gene_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE156309.csv"
out_clinical_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/clinical_data/GSE156309.csv"
json_path = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
is_gene_available = True # The background info shows this is Affymetrix gene expression microarray data
# 2.1 Data Availability
age_row = 0 # Age data is in row 0
trait_row = 3 # Disease status (relapse) is in row 3
gender_row = None # Gender data not available
# 2.2 Data Type Conversion Functions
def convert_age(x):
try:
# Extract number after "age: "
age = int(x.split(": ")[1])
return age
except:
return None
def convert_trait(x):
# Convert relapse status to binary
try:
status = x.split(": ")[1].lower()
if "relapse-free" in status:
return 0
elif "relapse" in status:
return 1
return None
except:
return None
def convert_gender(x):
# Not used as gender data is not available
return None
# 3. Save Metadata
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed data
print("Preview of processed clinical features:")
print(preview_df(clinical_features))
# Save to file
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs and shape of data
print("Shape of genetic data:", genetic_data.shape)
print("\nFirst 5 rows with sample columns:")
print(genetic_data.head())
print("\nFirst 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
# Print first few lines of raw matrix file to inspect format
print("\nFirst few lines of raw matrix file:")
with gzip.open(matrix_file_path, 'rt') as f:
for i, line in enumerate(f):
if i < 10: # Print first 10 lines
print(line.strip())
elif "!series_matrix_table_begin" in line:
print("\nFound table marker at line", i)
# Print next 3 lines after marker
for _ in range(3):
print(next(f).strip())
break
# Looking at the IDs like '1007_s_at', '1053_at', these are Affymetrix probe IDs from the U133 Plus 2.0 array platform
# This is also confirmed in the metadata: "Affymetrix Human U133 Plus 2.0 microarrays"
# These probe IDs need to be mapped to official gene symbols
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview annotation structure
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# 1. From observation of IDs:
# In gene_annotation: 'ID' column has values like '1007_s_at'
# In genetic_data: index has same format like '1007_s_at'
# Gene symbols are in 'Gene Symbol' column
# 2. Get gene mapping dataframe
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
# 3. Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Preview result
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of gene expression data:")
print(gene_data.head())
# 1. Normalize gene symbols in gene expression data
genetic_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save metadata about dataset
note = "Dataset contains gene expression data from DLBCL patients, measuring relapse status as trait."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |