File size: 8,607 Bytes
dd19378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "X-Linked_Lymphoproliferative_Syndrome"
cohort = "GSE180393"

# Input paths
in_trait_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome"
in_cohort_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome/GSE180393"

# Output paths
out_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/GSE180393.csv"
out_gene_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE180393.csv"
out_clinical_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/clinical_data/GSE180393.csv"
json_path = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())

print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# Yes - based on series info this is microarray gene expression data on Affymetrix ST2.1 platform
is_gene_available = True

# 2.1 Data Availability & 2.2 Data Type Conversion 

# For trait:
# Row 0 contains "sample group" which indicates disease status
trait_row = 0

def convert_trait(value: str) -> Optional[int]:
    if not isinstance(value, str):
        return None
    # Extract value after colon
    if ':' in value:
        value = value.split(':', 1)[1].strip()
    # Living donor = 0 (control), all disease conditions = 1 
    if 'Living donor' in value:
        return 0
    return 1  # All other values indicate disease conditions

# Age and gender data not available in sample characteristics
age_row = None
gender_row = None

def convert_age(value: str) -> Optional[float]:
    return None

def convert_gender(value: str) -> Optional[int]:
    return None

# 3. Save metadata
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=bool(trait_row is not None))

# 4. Extract clinical features
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age, 
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    print("Preview of extracted clinical features:")
    print(preview_df(clinical_features))
    
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs and shape of data
print("Shape of genetic data:", genetic_data.shape)
print("\nFirst 5 rows with sample columns:")
print(genetic_data.head())
print("\nFirst 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))

# Print first few lines of raw matrix file to inspect format
print("\nFirst few lines of raw matrix file:")
with gzip.open(matrix_file_path, 'rt') as f:
    for i, line in enumerate(f):
        if i < 10:  # Print first 10 lines
            print(line.strip())
        elif "!series_matrix_table_begin" in line:
            print("\nFound table marker at line", i)
            # Print next 3 lines after marker
            for _ in range(3):
                print(next(f).strip())
            break
# Based on the gene identifiers shown (e.g. '100009613_at', '10000_at'), these appear to be Affymetrix probe IDs
# from the microarray platform mentioned in the metadata rather than standard human gene symbols.
# Therefore they will need to be mapped to gene symbols.

requires_gene_mapping = True
# First inspect raw SOFT file content
print("First 50 lines of SOFT file:")
with gzip.open(soft_file_path, 'rt') as f:
    for i, line in enumerate(f):
        if i < 50:  # Print first 50 lines 
            print(line.strip())
        elif i == 50:
            print("...\n")

# Extract gene annotation 
gene_annotation = get_gene_annotation(soft_file_path)

# Print number of rows and columns
print(f"\nShape of annotation data: {gene_annotation.shape}")
print("\nColumn names in annotation data:")
print(gene_annotation.columns.tolist())

# Print first few entries
print("\nPreview of annotation data:")
print(gene_annotation.head())
# Get gene annotation using the provided function
gene_annotation = get_gene_annotation(soft_file_path)

# Create mapping between probe IDs and gene symbols through Entrez IDs
prob_to_entrez = gene_annotation[['ID', 'ENTREZ_GENE_ID']].dropna()
entrez_to_symbol = pd.read_csv('https://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz',
                            sep='\t', compression='gzip',
                            usecols=['GeneID', 'Symbol']).rename(columns={'GeneID': 'ENTREZ_GENE_ID', 'Symbol': 'Gene'})

# Get final mapping and proceed with gene data conversion
mapping_df = prob_to_entrez.merge(entrez_to_symbol, on='ENTREZ_GENE_ID', how='left')[['ID', 'Gene']].dropna()

# Convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Normalize gene symbols to official ones
gene_data = normalize_gene_symbols_in_index(gene_data)

print("\nShape of gene expression data after mapping:", gene_data.shape)
print("\nPreview of gene expression data:")
print(gene_data.head())

# Save gene data
gene_data.to_csv(out_gene_data_file)
# Get gene annotation using the provided function
gene_annotation = get_gene_annotation(soft_file_path)

# Create mapping between probe IDs and gene symbols through Entrez IDs
prob_to_entrez = gene_annotation[['ID', 'ENTREZ_GENE_ID']].dropna()
prob_to_entrez['ENTREZ_GENE_ID'] = prob_to_entrez['ENTREZ_GENE_ID'].astype(str)

entrez_to_symbol = pd.read_csv('https://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz',
                            sep='\t', compression='gzip',
                            usecols=['GeneID', 'Symbol'])
entrez_to_symbol['GeneID'] = entrez_to_symbol['GeneID'].astype(str)

# Get final mapping and proceed with gene data conversion
mapping_df = prob_to_entrez.merge(entrez_to_symbol, 
                                 left_on='ENTREZ_GENE_ID', 
                                 right_on='GeneID', 
                                 how='left')[['ID', 'Symbol']].dropna()
mapping_df = mapping_df.rename(columns={'Symbol': 'Gene'})

# Convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Normalize gene symbols to official ones
gene_data = normalize_gene_symbols_in_index(gene_data)

print("\nShape of gene expression data after mapping:", gene_data.shape)
print("\nPreview of gene expression data:")
print(gene_data.head())

# Save gene data
gene_data.to_csv(out_gene_data_file)
# 1. Gene data was already normalized in previous step
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) 
gene_data.to_csv(out_gene_data_file)

# 2. Validate and save metadata about dataset being unusable due to lack of trait data
note = "Dataset contains gene expression data from kidney disease patients, but lacks data for X-linked lymphoproliferative syndrome."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=False,
    is_biased=False,
    df=gene_data,
    note=note
)
# 1. Gene expression data was normalized in step 7 and stored in genetic_data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
genetic_data.to_csv(out_gene_data_file)

# 2. Save metadata indicating trait data is unavailable 
note = "Dataset contains gene expression data from kidney disease patients, but lacks data for X-linked lymphoproliferative syndrome."
is_usable = validate_and_save_cohort_info(
    is_final=True, 
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=False,
    is_biased=False,
    df=genetic_data,
    note=note
)