File size: 8,607 Bytes
dd19378 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "X-Linked_Lymphoproliferative_Syndrome"
cohort = "GSE180393"
# Input paths
in_trait_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome"
in_cohort_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome/GSE180393"
# Output paths
out_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/GSE180393.csv"
out_gene_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE180393.csv"
out_clinical_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/clinical_data/GSE180393.csv"
json_path = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Yes - based on series info this is microarray gene expression data on Affymetrix ST2.1 platform
is_gene_available = True
# 2.1 Data Availability & 2.2 Data Type Conversion
# For trait:
# Row 0 contains "sample group" which indicates disease status
trait_row = 0
def convert_trait(value: str) -> Optional[int]:
if not isinstance(value, str):
return None
# Extract value after colon
if ':' in value:
value = value.split(':', 1)[1].strip()
# Living donor = 0 (control), all disease conditions = 1
if 'Living donor' in value:
return 0
return 1 # All other values indicate disease conditions
# Age and gender data not available in sample characteristics
age_row = None
gender_row = None
def convert_age(value: str) -> Optional[float]:
return None
def convert_gender(value: str) -> Optional[int]:
return None
# 3. Save metadata
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=bool(trait_row is not None))
# 4. Extract clinical features
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
print("Preview of extracted clinical features:")
print(preview_df(clinical_features))
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs and shape of data
print("Shape of genetic data:", genetic_data.shape)
print("\nFirst 5 rows with sample columns:")
print(genetic_data.head())
print("\nFirst 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
# Print first few lines of raw matrix file to inspect format
print("\nFirst few lines of raw matrix file:")
with gzip.open(matrix_file_path, 'rt') as f:
for i, line in enumerate(f):
if i < 10: # Print first 10 lines
print(line.strip())
elif "!series_matrix_table_begin" in line:
print("\nFound table marker at line", i)
# Print next 3 lines after marker
for _ in range(3):
print(next(f).strip())
break
# Based on the gene identifiers shown (e.g. '100009613_at', '10000_at'), these appear to be Affymetrix probe IDs
# from the microarray platform mentioned in the metadata rather than standard human gene symbols.
# Therefore they will need to be mapped to gene symbols.
requires_gene_mapping = True
# First inspect raw SOFT file content
print("First 50 lines of SOFT file:")
with gzip.open(soft_file_path, 'rt') as f:
for i, line in enumerate(f):
if i < 50: # Print first 50 lines
print(line.strip())
elif i == 50:
print("...\n")
# Extract gene annotation
gene_annotation = get_gene_annotation(soft_file_path)
# Print number of rows and columns
print(f"\nShape of annotation data: {gene_annotation.shape}")
print("\nColumn names in annotation data:")
print(gene_annotation.columns.tolist())
# Print first few entries
print("\nPreview of annotation data:")
print(gene_annotation.head())
# Get gene annotation using the provided function
gene_annotation = get_gene_annotation(soft_file_path)
# Create mapping between probe IDs and gene symbols through Entrez IDs
prob_to_entrez = gene_annotation[['ID', 'ENTREZ_GENE_ID']].dropna()
entrez_to_symbol = pd.read_csv('https://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz',
sep='\t', compression='gzip',
usecols=['GeneID', 'Symbol']).rename(columns={'GeneID': 'ENTREZ_GENE_ID', 'Symbol': 'Gene'})
# Get final mapping and proceed with gene data conversion
mapping_df = prob_to_entrez.merge(entrez_to_symbol, on='ENTREZ_GENE_ID', how='left')[['ID', 'Gene']].dropna()
# Convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Normalize gene symbols to official ones
gene_data = normalize_gene_symbols_in_index(gene_data)
print("\nShape of gene expression data after mapping:", gene_data.shape)
print("\nPreview of gene expression data:")
print(gene_data.head())
# Save gene data
gene_data.to_csv(out_gene_data_file)
# Get gene annotation using the provided function
gene_annotation = get_gene_annotation(soft_file_path)
# Create mapping between probe IDs and gene symbols through Entrez IDs
prob_to_entrez = gene_annotation[['ID', 'ENTREZ_GENE_ID']].dropna()
prob_to_entrez['ENTREZ_GENE_ID'] = prob_to_entrez['ENTREZ_GENE_ID'].astype(str)
entrez_to_symbol = pd.read_csv('https://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz',
sep='\t', compression='gzip',
usecols=['GeneID', 'Symbol'])
entrez_to_symbol['GeneID'] = entrez_to_symbol['GeneID'].astype(str)
# Get final mapping and proceed with gene data conversion
mapping_df = prob_to_entrez.merge(entrez_to_symbol,
left_on='ENTREZ_GENE_ID',
right_on='GeneID',
how='left')[['ID', 'Symbol']].dropna()
mapping_df = mapping_df.rename(columns={'Symbol': 'Gene'})
# Convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Normalize gene symbols to official ones
gene_data = normalize_gene_symbols_in_index(gene_data)
print("\nShape of gene expression data after mapping:", gene_data.shape)
print("\nPreview of gene expression data:")
print(gene_data.head())
# Save gene data
gene_data.to_csv(out_gene_data_file)
# 1. Gene data was already normalized in previous step
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Validate and save metadata about dataset being unusable due to lack of trait data
note = "Dataset contains gene expression data from kidney disease patients, but lacks data for X-linked lymphoproliferative syndrome."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=False,
df=gene_data,
note=note
)
# 1. Gene expression data was normalized in step 7 and stored in genetic_data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
genetic_data.to_csv(out_gene_data_file)
# 2. Save metadata indicating trait data is unavailable
note = "Dataset contains gene expression data from kidney disease patients, but lacks data for X-linked lymphoproliferative syndrome."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=False,
df=genetic_data,
note=note
) |