File size: 9,455 Bytes
dd19378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "X-Linked_Lymphoproliferative_Syndrome"
cohort = "GSE180394"

# Input paths
in_trait_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome"
in_cohort_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome/GSE180394"

# Output paths
out_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/GSE180394.csv"
out_gene_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE180394.csv"
out_clinical_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/clinical_data/GSE180394.csv"
json_path = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())

print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# Yes - based on series title and design info mentioning "transcriptome" and "Affymetrix microarray"
is_gene_available = True

# 2.1 Data Availability
# After reviewing sample characteristics, no X-Linked Lymphoproliferative Syndrome cases found
trait_row = None # Trait not available
age_row = None # Age not available  
gender_row = None # Gender not available

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
    """No X-Linked Lymphoproliferative Syndrome cases in this dataset"""
    return None

def convert_age(value: str) -> Optional[float]:
    return None  # Not available

def convert_gender(value: str) -> Optional[int]:
    return None  # Not available

# 3. Save metadata
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=False)

# 4. Clinical Feature Extraction is skipped since trait_row is None
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs and shape of data
print("Shape of genetic data:", genetic_data.shape)
print("\nFirst 5 rows with sample columns:")
print(genetic_data.head())
print("\nFirst 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))

# Print first few lines of raw matrix file to inspect format
print("\nFirst few lines of raw matrix file:")
with gzip.open(matrix_file_path, 'rt') as f:
    for i, line in enumerate(f):
        if i < 10:  # Print first 10 lines
            print(line.strip())
        elif "!series_matrix_table_begin" in line:
            print("\nFound table marker at line", i)
            # Print next 3 lines after marker
            for _ in range(3):
                print(next(f).strip())
            break
requires_gene_mapping = True
# Extract gene annotation from SOFT file
# Try different prefix combinations to find gene symbol information
gene_annotation = get_gene_annotation(soft_file_path, prefixes=['^', '!'])

# Print all available columns to check for gene symbol information
print("Available columns in gene annotation:")
print(gene_annotation.columns.tolist())

# Print first few rows to inspect data
print("\nGene annotation preview (first 5 rows):")
print(gene_annotation.head())

# Look for Platform annotation section in SOFT file that may contain gene mapping
print("\nChecking SOFT file for Platform annotation:")
with gzip.open(soft_file_path, 'rt') as f:
    in_platform = False
    for i, line in enumerate(f):
        if line.startswith('^PLATFORM'):
            in_platform = True
            print("\nFound Platform section:")
        if in_platform and i < 100:  # Print first 100 lines after platform section
            print(line.strip())
# Get probe to ENTREZ mapping from annotation
mapping_df = gene_annotation.rename(columns={'ID': 'ID', 'ENTREZ_GENE_ID': 'Gene'})
mapping_df = mapping_df.astype({'ID': 'str', 'Gene': 'str'})

# Convert probe-level data to gene-level data using ENTREZ IDs first
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Convert ENTREZ IDs to gene symbols and aggregate data
gene_data = normalize_gene_symbols_in_index(gene_data)

# Print results
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())

# Save gene expression data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)

# Preview annotation structure 
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# Get probe IDs that match with genetic_data index pattern
probe_pattern = r'[0-9]+_at$'  # Pattern matching probes like '10000_at'
probes = [id for id in genetic_data.index if re.match(probe_pattern, id)]

# Create mapping dataframe
mapping_df = pd.DataFrame()
mapping_df['ID'] = probes
mapping_df['Gene'] = [re.match(r'(\d+)_at', id).group(1) for id in probes]

# Convert probe-level measurements to gene-level expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Convert ENTREZ IDs to gene symbols using built-in normalization
gene_data = normalize_gene_symbols_in_index(gene_data)

# Print results
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())

# Save gene expression data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)

# Preview annotation structure 
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# Clean probe IDs to match annotation format by removing leading zeros
genetic_data.index = genetic_data.index.str.replace(r'0*([0-9]+_at)', r'\1', regex=True)

# Get probe-to-gene mapping from annotation data
mapping_df = get_gene_mapping(gene_annotation, 'ID', 'ENTREZ_GENE_ID')

# Convert probe-level measurements to gene-level expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Convert ENTREZ IDs to gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)

# Print results
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())

# Save gene expression data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)

# Preview annotation structure 
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# Print gene_annotation info to debug
print("Gene annotation info:")
print(gene_annotation.info())
print("\nGene annotation columns:")
print(gene_annotation.columns)

# Convert probe IDs in gene_annotation to match expression data format
mapping_df = gene_annotation.copy()
mapping_df.columns = ['ID', 'Gene']  # Rename columns to match expected format

# Clean probe IDs in expression data to match annotation format by removing leading zeros
genetic_data.index = genetic_data.index.str.replace(r'0*(\d+)(_at)', r'\1\2', regex=True)

# Convert probe measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Convert ENTREZ IDs to gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)

# Print results
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())

# Save gene expression data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)

# Preview annotation structure 
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# Create mapping dataframe from gene annotation
mapping_df = pd.DataFrame()
mapping_df['ID'] = gene_annotation['ID']
mapping_df['Gene'] = gene_annotation['ENTREZ_GENE_ID']

# Clean probe IDs in expression data to match annotation format
genetic_data.index = genetic_data.index.str.replace(r'0*(\d+)(_at)', r'\1\2', regex=True)

# Convert probe measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Convert ENTREZ IDs to gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)

# Print results
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())

# Save gene expression data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)