File size: 9,455 Bytes
dd19378 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "X-Linked_Lymphoproliferative_Syndrome"
cohort = "GSE180394"
# Input paths
in_trait_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome"
in_cohort_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome/GSE180394"
# Output paths
out_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/GSE180394.csv"
out_gene_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE180394.csv"
out_clinical_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/clinical_data/GSE180394.csv"
json_path = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Yes - based on series title and design info mentioning "transcriptome" and "Affymetrix microarray"
is_gene_available = True
# 2.1 Data Availability
# After reviewing sample characteristics, no X-Linked Lymphoproliferative Syndrome cases found
trait_row = None # Trait not available
age_row = None # Age not available
gender_row = None # Gender not available
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
"""No X-Linked Lymphoproliferative Syndrome cases in this dataset"""
return None
def convert_age(value: str) -> Optional[float]:
return None # Not available
def convert_gender(value: str) -> Optional[int]:
return None # Not available
# 3. Save metadata
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=False)
# 4. Clinical Feature Extraction is skipped since trait_row is None
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs and shape of data
print("Shape of genetic data:", genetic_data.shape)
print("\nFirst 5 rows with sample columns:")
print(genetic_data.head())
print("\nFirst 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
# Print first few lines of raw matrix file to inspect format
print("\nFirst few lines of raw matrix file:")
with gzip.open(matrix_file_path, 'rt') as f:
for i, line in enumerate(f):
if i < 10: # Print first 10 lines
print(line.strip())
elif "!series_matrix_table_begin" in line:
print("\nFound table marker at line", i)
# Print next 3 lines after marker
for _ in range(3):
print(next(f).strip())
break
requires_gene_mapping = True
# Extract gene annotation from SOFT file
# Try different prefix combinations to find gene symbol information
gene_annotation = get_gene_annotation(soft_file_path, prefixes=['^', '!'])
# Print all available columns to check for gene symbol information
print("Available columns in gene annotation:")
print(gene_annotation.columns.tolist())
# Print first few rows to inspect data
print("\nGene annotation preview (first 5 rows):")
print(gene_annotation.head())
# Look for Platform annotation section in SOFT file that may contain gene mapping
print("\nChecking SOFT file for Platform annotation:")
with gzip.open(soft_file_path, 'rt') as f:
in_platform = False
for i, line in enumerate(f):
if line.startswith('^PLATFORM'):
in_platform = True
print("\nFound Platform section:")
if in_platform and i < 100: # Print first 100 lines after platform section
print(line.strip())
# Get probe to ENTREZ mapping from annotation
mapping_df = gene_annotation.rename(columns={'ID': 'ID', 'ENTREZ_GENE_ID': 'Gene'})
mapping_df = mapping_df.astype({'ID': 'str', 'Gene': 'str'})
# Convert probe-level data to gene-level data using ENTREZ IDs first
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Convert ENTREZ IDs to gene symbols and aggregate data
gene_data = normalize_gene_symbols_in_index(gene_data)
# Print results
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
# Save gene expression data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview annotation structure
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# Get probe IDs that match with genetic_data index pattern
probe_pattern = r'[0-9]+_at$' # Pattern matching probes like '10000_at'
probes = [id for id in genetic_data.index if re.match(probe_pattern, id)]
# Create mapping dataframe
mapping_df = pd.DataFrame()
mapping_df['ID'] = probes
mapping_df['Gene'] = [re.match(r'(\d+)_at', id).group(1) for id in probes]
# Convert probe-level measurements to gene-level expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Convert ENTREZ IDs to gene symbols using built-in normalization
gene_data = normalize_gene_symbols_in_index(gene_data)
# Print results
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
# Save gene expression data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview annotation structure
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# Clean probe IDs to match annotation format by removing leading zeros
genetic_data.index = genetic_data.index.str.replace(r'0*([0-9]+_at)', r'\1', regex=True)
# Get probe-to-gene mapping from annotation data
mapping_df = get_gene_mapping(gene_annotation, 'ID', 'ENTREZ_GENE_ID')
# Convert probe-level measurements to gene-level expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Convert ENTREZ IDs to gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Print results
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
# Save gene expression data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview annotation structure
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# Print gene_annotation info to debug
print("Gene annotation info:")
print(gene_annotation.info())
print("\nGene annotation columns:")
print(gene_annotation.columns)
# Convert probe IDs in gene_annotation to match expression data format
mapping_df = gene_annotation.copy()
mapping_df.columns = ['ID', 'Gene'] # Rename columns to match expected format
# Clean probe IDs in expression data to match annotation format by removing leading zeros
genetic_data.index = genetic_data.index.str.replace(r'0*(\d+)(_at)', r'\1\2', regex=True)
# Convert probe measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Convert ENTREZ IDs to gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Print results
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
# Save gene expression data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview annotation structure
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# Create mapping dataframe from gene annotation
mapping_df = pd.DataFrame()
mapping_df['ID'] = gene_annotation['ID']
mapping_df['Gene'] = gene_annotation['ENTREZ_GENE_ID']
# Clean probe IDs in expression data to match annotation format
genetic_data.index = genetic_data.index.str.replace(r'0*(\d+)(_at)', r'\1\2', regex=True)
# Convert probe measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Convert ENTREZ IDs to gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Print results
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
# Save gene expression data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file) |