File size: 5,234 Bytes
dd19378 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "X-Linked_Lymphoproliferative_Syndrome"
cohort = "GSE190042"
# Input paths
in_trait_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome"
in_cohort_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome/GSE190042"
# Output paths
out_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/GSE190042.csv"
out_gene_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE190042.csv"
out_clinical_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/clinical_data/GSE190042.csv"
json_path = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Based on the Series_summary, this is a transcriptome profiling dataset using Affymetrix PrimeView array
# This indicates gene expression data is available
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Row identification
trait_row = None # No data about X-Linked Lymphoproliferative Syndrome
age_row = 2 # Age data in row 2
gender_row = 1 # Gender data in row 1
# 2.2 Data Type Conversion Functions
def convert_age(x):
if not x or ':' not in x:
return None
age_str = x.split(':')[1].strip()
try:
return float(age_str)
except:
return None
def convert_gender(x):
if not x or ':' not in x:
return None
gender = x.split(':')[1].strip().upper()
if gender == 'F':
return 0
elif gender == 'M':
return 1
return None
def convert_trait(x):
return None # Not used since trait data is not available
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs and shape of data
print("Shape of genetic data:", genetic_data.shape)
print("\nFirst 5 rows with sample columns:")
print(genetic_data.head())
print("\nFirst 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
# Print first few lines of raw matrix file to inspect format
print("\nFirst few lines of raw matrix file:")
with gzip.open(matrix_file_path, 'rt') as f:
for i, line in enumerate(f):
if i < 10: # Print first 10 lines
print(line.strip())
elif "!series_matrix_table_begin" in line:
print("\nFound table marker at line", i)
# Print next 3 lines after marker
for _ in range(3):
print(next(f).strip())
break
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview annotation structure
preview = preview_df(gene_annotation)
print("Gene annotation preview:")
print(preview)
# Get gene mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
# Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Save the processed gene data
gene_data.to_csv(out_gene_data_file)
# Since trait_row is None, skip clinical feature extraction and data linking
# Just validate and save metadata about dataset being unusable due to lack of trait data
note = "Dataset contains gene expression data from multiple myeloma patients, but lacks data for X-linked lymphoproliferative syndrome."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=None,
df=None,
note=note
)
# No need to save any processed data since dataset isn't usable
# 1. Normalize gene symbols in gene expression data
genetic_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
genetic_data.to_csv(out_gene_data_file)
# 2. Validate and save metadata about dataset being unusable due to lack of trait data
note = "Dataset contains gene expression data from multiple myeloma patients, but lacks data for X-linked lymphoproliferative syndrome."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=False,
df=genetic_data,
note=note
) |