File size: 6,393 Bytes
dd19378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "X-Linked_Lymphoproliferative_Syndrome"
cohort = "GSE248835"

# Input paths
in_trait_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome"
in_cohort_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome/GSE248835"

# Output paths
out_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/GSE248835.csv"
out_gene_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE248835.csv"
out_clinical_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/clinical_data/GSE248835.csv"
json_path = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())

print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# From the background info, this is a gene expression study analyzing B-cell lymphoma tumor characteristics
is_gene_available = True  

# 2.1 Data Availability 
# From sample characteristics:
# Row 1 shows treatment arm, can be used to infer trait(disease state): "Axicabtagene Ciloleucel" vs "Standard of Care Chemotherapy"
# Age and gender are not available
trait_row = 1
age_row = None  
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> float:
    """
    Convert treatment arm information to binary values.
    1: Axicabtagene Ciloleucel (experimental treatment)
    0: Standard of Care Chemotherapy (control)
    """
    if pd.isna(value):
        return None
    if isinstance(value, str):
        if "treatment arm:" in value:
            if "Axicabtagene Ciloleucel" in value:
                return 1
            elif "Standard of Care Chemotherapy" in value:
                return 0
    return None

convert_age = None
convert_gender = None

# 3. Save Metadata 
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age, 
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    print("Preview of extracted clinical features:")
    print(preview_df(selected_clinical_df))
    
    # Save clinical data
    selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs and shape of data
print("Shape of genetic data:", genetic_data.shape)
print("\nFirst 5 rows with sample columns:")
print(genetic_data.head())
print("\nFirst 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))

# Print first few lines of raw matrix file to inspect format
print("\nFirst few lines of raw matrix file:")
with gzip.open(matrix_file_path, 'rt') as f:
    for i, line in enumerate(f):
        if i < 10:  # Print first 10 lines
            print(line.strip())
        elif "!series_matrix_table_begin" in line:
            print("\nFound table marker at line", i)
            # Print next 3 lines after marker
            for _ in range(3):
                print(next(f).strip())
            break
# Review gene identifiers
# Based on the first few gene IDs (1, 2, 3, etc) and series info showing this is an array study,
# these are probe IDs that need to be mapped to gene symbols

requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)

# Display gene annotation structure
print("Gene annotation columns:")
print(gene_annotation.columns)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))
# Get gene mapping - "ID" is the probe identifier column matching the gene expression data
# "Gene_Signature_Name" seems to contain gene names/signatures
mapping_df = get_gene_mapping(
    annotation=gene_annotation,
    prob_col='ID', 
    gene_col='Gene_Signature_Name'
)

# Apply gene mapping to convert probe-level measurements to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Preview the resulting gene expression data
print("\nShape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows and columns of mapped gene data:")
print(gene_data.head())
# 1. Normalize gene symbols in gene expression data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
print("\nGene data shape (normalized gene-level):", gene_data.shape)

# 2. Link clinical and genetic data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in features
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save dataset metadata
note = "Dataset contains gene expression data from cancer cell lines, but has severely imbalanced distribution of carcinosarcoma cases."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)