|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Chronic_obstructive_pulmonary_disease_(COPD)" |
|
cohort = "GSE21359" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Chronic_obstructive_pulmonary_disease_(COPD)" |
|
in_cohort_dir = "../DATA/GEO/Chronic_obstructive_pulmonary_disease_(COPD)/GSE21359" |
|
|
|
|
|
out_data_file = "./output/preprocess/1/Chronic_obstructive_pulmonary_disease_(COPD)/GSE21359.csv" |
|
out_gene_data_file = "./output/preprocess/1/Chronic_obstructive_pulmonary_disease_(COPD)/gene_data/GSE21359.csv" |
|
out_clinical_data_file = "./output/preprocess/1/Chronic_obstructive_pulmonary_disease_(COPD)/clinical_data/GSE21359.csv" |
|
json_path = "./output/preprocess/1/Chronic_obstructive_pulmonary_disease_(COPD)/cohort_info.json" |
|
|
|
|
|
from tools.preprocess import * |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] |
|
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) |
|
|
|
|
|
sample_characteristics_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("Sample Characteristics Dictionary:") |
|
print(sample_characteristics_dict) |
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
trait_row = 3 |
|
age_row = 0 |
|
gender_row = 1 |
|
|
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
""" |
|
Convert the raw smoking status string to a binary trait: |
|
1 = COPD |
|
0 = non-COPD |
|
Unknown/invalid -> None |
|
""" |
|
|
|
|
|
|
|
parts = value.split(":", 1) |
|
if len(parts) < 2: |
|
return None |
|
val = parts[1].strip().lower() |
|
if "copd" in val: |
|
return 1 |
|
elif "smoker" in val or "non-smoker" in val: |
|
return 0 |
|
return None |
|
|
|
def convert_age(value: str) -> float: |
|
""" |
|
Convert the raw age string to a numeric (continuous) age. |
|
Unknown/invalid -> None |
|
""" |
|
parts = value.split(":", 1) |
|
if len(parts) < 2: |
|
return None |
|
val = parts[1].strip() |
|
try: |
|
return float(val) |
|
except ValueError: |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
""" |
|
Convert the raw gender string to a binary indicator: |
|
0 = Female |
|
1 = Male |
|
Unknown/invalid -> None |
|
""" |
|
parts = value.split(":", 1) |
|
if len(parts) < 2: |
|
return None |
|
val = parts[1].strip().lower() |
|
if val == 'm': |
|
return 1 |
|
elif val == 'f': |
|
return 0 |
|
return None |
|
|
|
|
|
is_trait_available = (trait_row is not None) |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
preview_output = preview_df(selected_clinical) |
|
print("Preview of selected clinical features:", preview_output) |
|
|
|
|
|
selected_clinical.to_csv(out_clinical_data_file, index=False) |
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print(gene_data.index[:20]) |
|
|
|
|
|
print("requires_gene_mapping = True") |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation preview:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
|
|
|
|
|
|
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol") |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_df) |
|
|
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_trait_biased, |
|
df=linked_data |
|
) |
|
|
|
|
|
if is_usable: |
|
unbiased_linked_data.to_csv(out_data_file) |