|
import sys |
|
import os |
|
sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '..'))) |
|
|
|
import traceback |
|
|
|
from sklearn.linear_model import LogisticRegression, LinearRegression |
|
|
|
from tools.statistics import * |
|
from utils.utils import get_question_pairs |
|
|
|
task_info_file = '../metadata/task_info.json' |
|
all_pairs = get_question_pairs(task_info_file) |
|
|
|
in_data_root = '../output/preprocess' |
|
output_root = '../output/regress' |
|
|
|
for i, (trait, condition) in enumerate(all_pairs): |
|
print(f"Analyzing question {i}: trait {trait} and condition {condition}") |
|
try: |
|
if condition is None: |
|
print(f"Trait {trait} only") |
|
trait_data, _, _ = select_and_load_cohort(in_data_root, trait, is_two_step=False) |
|
trait_data = trait_data.drop(columns=['Age', 'Gender'], errors="ignore") |
|
|
|
Y = trait_data[trait].values |
|
X = trait_data.drop(columns=[trait]).values |
|
|
|
has_batch_effect = detect_batch_effect(X) |
|
if has_batch_effect: |
|
model_constructor = LMM |
|
else: |
|
model_constructor = Lasso |
|
|
|
param_values = [1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1] |
|
best_config, best_performance = tune_hyperparameters(model_constructor, param_values, X, Y, |
|
trait_data.columns, trait, task_info_file, |
|
condition) |
|
model = ResidualizationRegressor(model_constructor, best_config) |
|
normalized_X, _ = normalize_data(X) |
|
model.fit(normalized_X, Y) |
|
|
|
var_names = trait_data.columns.tolist() |
|
significant_genes = interpret_result(model, var_names, trait, condition) |
|
save_result(significant_genes, best_performance, output_root, trait) |
|
|
|
else: |
|
if condition in ['Age', 'Gender']: |
|
trait_data, _, _ = select_and_load_cohort(in_data_root, trait, condition, is_two_step=False) |
|
redundant_col = 'Age' if condition == 'Gender' else 'Gender' |
|
if redundant_col in trait_data.columns: |
|
trait_data = trait_data.drop(columns=[redundant_col]) |
|
else: |
|
trait_data, condition_data, regressors = select_and_load_cohort(in_data_root, trait, condition, is_two_step=True, gene_info_path=task_info_file) |
|
trait_data = trait_data.drop(columns=['Age', 'Gender'], errors='ignore') |
|
if regressors is None: |
|
print(f'No gene regressors for trait {trait} and condition {condition}') |
|
continue |
|
|
|
print("Common gene regressors for condition and trait", regressors) |
|
X_condition = condition_data[regressors].values |
|
Y_condition = condition_data[condition].values |
|
|
|
condition_type = 'binary' if len(np.unique(Y_condition)) == 2 else 'continuous' |
|
|
|
if condition_type == 'binary': |
|
if X_condition.shape[1] > X_condition.shape[0]: |
|
model = LogisticRegression(penalty='l1', solver='liblinear', random_state=42) |
|
else: |
|
model = LogisticRegression() |
|
else: |
|
if X_condition.shape[1] > X_condition.shape[0]: |
|
model = Lasso() |
|
else: |
|
model = LinearRegression() |
|
|
|
normalized_X_condition, _ = normalize_data(X_condition) |
|
model.fit(normalized_X_condition, Y_condition) |
|
|
|
regressors_in_trait = trait_data[regressors].values |
|
normalized_regressors_in_trait, _ = normalize_data(regressors_in_trait) |
|
if condition_type == 'binary': |
|
predicted_condition = model.predict_proba(normalized_regressors_in_trait)[:, 1] |
|
else: |
|
predicted_condition = model.predict(normalized_regressors_in_trait) |
|
|
|
trait_data[condition] = predicted_condition |
|
|
|
Y = trait_data[trait].values |
|
Z = trait_data[condition].values |
|
X = trait_data.drop(columns=[trait, condition]).values |
|
|
|
has_batch_effect = detect_batch_effect(X) |
|
if has_batch_effect: |
|
model_constructor = LMM |
|
else: |
|
model_constructor = Lasso |
|
|
|
param_values = [1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1] |
|
best_config, best_performance = tune_hyperparameters(model_constructor, param_values, X, Y, trait_data.columns, trait, task_info_file, condition, Z) |
|
|
|
model = ResidualizationRegressor(model_constructor, best_config) |
|
normalized_X, _ = normalize_data(X) |
|
normalized_Z, _ = normalize_data(Z) |
|
model.fit(normalized_X, Y, normalized_Z) |
|
|
|
var_names = trait_data.columns.tolist() |
|
significant_genes = interpret_result(model, var_names, trait, condition) |
|
save_result(significant_genes, best_performance, output_root, trait, condition) |
|
|
|
except Exception as e: |
|
print(f"Error processing pair {i}, for the trait '{trait}' and the condition '{condition}':\n{traceback.format_exc()}") |
|
continue |