Liu-Hy's picture
Add files using upload-large-folder tool
0db4514 verified
raw
history blame
8.81 kB
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Chronic_kidney_disease"
cohort = "GSE66494"
# Input paths
in_trait_dir = "../DATA/GEO/Chronic_kidney_disease"
in_cohort_dir = "../DATA/GEO/Chronic_kidney_disease/GSE66494"
# Output paths
out_data_file = "./output/preprocess/1/Chronic_kidney_disease/GSE66494.csv"
out_gene_data_file = "./output/preprocess/1/Chronic_kidney_disease/gene_data/GSE66494.csv"
out_clinical_data_file = "./output/preprocess/1/Chronic_kidney_disease/clinical_data/GSE66494.csv"
json_path = "./output/preprocess/1/Chronic_kidney_disease/cohort_info.json"
# STEP1
from tools.preprocess import *
# 1. Attempt to identify the paths to the SOFT file and the matrix file
try:
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
except AssertionError:
print("[WARNING] Could not find the expected '.soft' or '.matrix' files in the directory.")
soft_file, matrix_file = None, None
if soft_file is None or matrix_file is None:
print("[ERROR] Required GEO files are missing. Please check file names in the cohort directory.")
else:
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(matrix_file,
background_prefixes,
clinical_prefixes)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# Step 1. Determine Gene Expression Data Availability
is_gene_available = True # From the background info, it is indeed gene expression data.
# Step 2. Identify rows for trait, age, and gender and define conversion functions
# After examining the sample characteristics dictionary, we see mention of
# "disease status: chronic kidney disease (CKD)" in row 4, along with nan,
# which strongly suggests a binary classification (CKD or not CKD).
#
# No definite mention of age or gender is found, so those are unavailable.
trait_row = 4
age_row = None
gender_row = None
import pandas as pd
# Define conversion for the trait (binary: normal=0, CKD=1, unknown=0 if nan)
def convert_trait(value):
# Handle missing or NaN values
if pd.isna(value):
return 0 # Heuristic: treat missing or nan as non-CKD (0)
value_str = str(value)
parts = value_str.split(':', 1)
content = parts[1].strip() if len(parts) > 1 else parts[0].strip()
content_lower = content.lower()
if 'chronic kidney disease' in content_lower:
return 1
elif 'normal kidney' in content_lower:
return 0
else:
# Heuristic: treat others as non-CKD (0)
return 0
# No data for age or gender, so they always return None
def convert_age(value):
return None
def convert_gender(value):
return None
# Step 3. Perform initial filtering and save metadata
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# Step 4. If trait data is available, extract clinical features
if is_trait_available:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted clinical data
preview_output = preview_df(selected_clinical_df)
print("Preview of selected clinical features:", preview_output)
# Save the clinical data to CSV
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# Attempt to read gene expression data; if the library function yields an empty DataFrame,
# try re-reading without ignoring lines that start with '!' (because sometimes GEO data may
# place actual expression rows under lines that begin with '!').
gene_data = get_genetic_data(matrix_file)
if gene_data.empty:
print("[WARNING] The gene_data is empty. Attempting alternative loading without treating '!' as comments.")
import gzip
# Locate the marker line first
skip_rows = 0
with gzip.open(matrix_file, 'rt') as file:
for i, line in enumerate(file):
if "!series_matrix_table_begin" in line:
skip_rows = i + 1
break
# Read the data again, this time not treating '!' as comment
gene_data = pd.read_csv(
matrix_file,
compression="gzip",
skiprows=skip_rows,
delimiter="\t",
on_bad_lines="skip"
)
gene_data = gene_data.rename(columns={"ID_REF": "ID"}).astype({"ID": "str"})
gene_data.set_index("ID", inplace=True)
# Print the first 20 row IDs to confirm data structure
print(gene_data.index[:20])
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Identify the column with the probe identifiers and the column with the gene symbols.
# From the annotation preview, the "ID" column matches the gene expression data row IDs ("A_23_P..."),
# and the "GENE_SYMBOL" column holds the gene symbols.
probe_id_col = "ID"
gene_symbol_col = "GENE_SYMBOL"
# 2. Get the gene mapping dataframe by extracting these two columns from the gene annotation dataframe.
mapping_df = get_gene_mapping(
annotation=gene_annotation,
prob_col=probe_id_col,
gene_col=gene_symbol_col
)
# 3. Convert probe-level measurement to gene expression data
gene_data = apply_gene_mapping(
expression_df=gene_data,
mapping_df=mapping_df
)
import os
import pandas as pd
# STEP7: Data Normalization and Linking
# 1) Normalize the gene symbols in the previously obtained gene_data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
# 2) Load clinical data only if it exists and is non-empty
if os.path.exists(out_clinical_data_file) and os.path.getsize(out_clinical_data_file) > 0:
# Read the file
clinical_temp = pd.read_csv(out_clinical_data_file)
# Adjust row index to label the trait, age, and gender properly
if clinical_temp.shape[0] == 3:
clinical_temp.index = [trait, "Age", "Gender"]
elif clinical_temp.shape[0] == 2:
clinical_temp.index = [trait, "Age"]
elif clinical_temp.shape[0] == 1:
clinical_temp.index = [trait]
# 2) Link the clinical and normalized genetic data
linked_data = geo_link_clinical_genetic_data(clinical_temp, normalized_gene_data)
# 3) Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4) Check for severe bias in the trait; remove biased demographic features if present
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5) Final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=f"Final check on {cohort} with {trait}."
)
# 6) If the linked data is usable, save it
if is_usable:
linked_data.to_csv(out_data_file)
else:
# If no valid clinical data file is found, finalize metadata indicating trait unavailability
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=True, # Force a fallback so that it's flagged as unusable
df=pd.DataFrame(),
note=f"No trait data found for {cohort}, final metadata recorded."
)
# Per instructions, do not save a final linked data file when trait data is absent.