# Path Configuration | |
from tools.preprocess import * | |
# Processing context | |
trait = "Creutzfeldt-Jakob_Disease" | |
cohort = "GSE87629" | |
# Input paths | |
in_trait_dir = "../DATA/GEO/Creutzfeldt-Jakob_Disease" | |
in_cohort_dir = "../DATA/GEO/Creutzfeldt-Jakob_Disease/GSE87629" | |
# Output paths | |
out_data_file = "./output/preprocess/1/Creutzfeldt-Jakob_Disease/GSE87629.csv" | |
out_gene_data_file = "./output/preprocess/1/Creutzfeldt-Jakob_Disease/gene_data/GSE87629.csv" | |
out_clinical_data_file = "./output/preprocess/1/Creutzfeldt-Jakob_Disease/clinical_data/GSE87629.csv" | |
json_path = "./output/preprocess/1/Creutzfeldt-Jakob_Disease/cohort_info.json" | |
# STEP1 | |
from tools.preprocess import * | |
# 1. Identify the paths to the SOFT file and the matrix file | |
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) | |
# 2. Read the matrix file to obtain background information and sample characteristics data | |
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] | |
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] | |
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) | |
# 3. Obtain the sample characteristics dictionary from the clinical dataframe | |
sample_characteristics_dict = get_unique_values_by_row(clinical_data) | |
# 4. Explicitly print out all the background information and the sample characteristics dictionary | |
print("Background Information:") | |
print(background_info) | |
print("Sample Characteristics Dictionary:") | |
print(sample_characteristics_dict) | |
# Step 1: Determine if gene expression data is available | |
# Based on the background info (DNA microarray, purified B/T cells), we set: | |
is_gene_available = True | |
# Step 2: Identify data availability for trait, age, and gender. | |
# None of the sample characteristics keys mention Creutzfeldt-Jakob disease, age, or gender. | |
trait_row = None | |
age_row = None | |
gender_row = None | |
# Step 2.2: Define conversion functions, although no data is available. | |
def convert_trait(value: str) -> int: | |
# Not applicable; return None | |
return None | |
def convert_age(value: str) -> float: | |
# Not applicable; return None | |
return None | |
def convert_gender(value: str) -> int: | |
# Not applicable; return None | |
return None | |
# Step 3: Initial filtering and save metadata | |
is_trait_available = (trait_row is not None) | |
is_usable = validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=is_gene_available, | |
is_trait_available=is_trait_available | |
) | |
# Step 4: Since trait_row is None, we skip clinical feature extraction. | |
# STEP3 | |
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. | |
gene_data = get_genetic_data(matrix_file) | |
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. | |
print(gene_data.index[:20]) | |
print("requires_gene_mapping = True") | |
# STEP5 | |
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. | |
gene_annotation = get_gene_annotation(soft_file) | |
# 2. Use the 'preview_df' function from the library to preview the data and print out the results. | |
print("Gene annotation preview:") | |
print(preview_df(gene_annotation)) | |
# STEP6: Gene Identifier Mapping | |
# 1. Identify the columns for probe ID and gene symbol based on the annotation data preview. | |
# We see that the 'ID' column matches the probe identifiers ('ILMN_...'), | |
# and the 'Symbol' column holds the gene symbols. | |
prob_col = 'ID' | |
gene_col = 'Symbol' | |
# 2. Extract the columns from gene_annotation and construct the mapping dataframe. | |
mapping_df = get_gene_mapping(gene_annotation, prob_col=prob_col, gene_col=gene_col) | |
# 3. Convert probe-level data to gene-level data by applying the mapping. | |
gene_data = apply_gene_mapping(gene_data, mapping_df) | |
# Print basic overview to confirm the gene_data structure. | |
print("Shape of gene_data after mapping:", gene_data.shape) | |
print("First 20 gene symbols in the mapped data:") | |
print(list(gene_data.index[:20])) | |
# STEP7 | |
# Since in STEP 2 we determined that there is no available trait data (trait_row is None), | |
# we cannot link clinical data or perform trait-based analyses. We'll therefore skip | |
# linking, missing value handling based on the trait, and bias checks. | |
# However, we can still normalize the gene expression data and save it. | |
# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library. | |
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) | |
normalized_gene_data.to_csv(out_gene_data_file) | |
# 2. Because trait data is not available, we skip steps involving clinical data, linking, and trait-based checks. | |
# 3. Perform a final-like validation but use is_final=False to avoid errors, indicating that the dataset | |
# lacks trait data. This will update the cohort_info.json with the fact that there is no trait data. | |
is_usable = validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=True, | |
is_trait_available=False | |
) | |
# 4. Because is_trait_available=False, the dataset is not usable for trait-based analysis. | |
# No further steps are needed. |